当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
High Strength and Tough Ionogels with Bicontinuous Phase Network Structure Induced by Electrostatic Adsorption Triggered Microphase Separation
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2024-09-17 , DOI: 10.1002/adfm.202410588 Zhenhua Cong 1 , Zeyu Cui 1 , Chen Liu 2 , Junlong Wang 1 , Xiaosheng Huo 1 , Junbin Xu 2 , Jian Niu 2
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2024-09-17 , DOI: 10.1002/adfm.202410588 Zhenhua Cong 1 , Zeyu Cui 1 , Chen Liu 2 , Junlong Wang 1 , Xiaosheng Huo 1 , Junbin Xu 2 , Jian Niu 2
Affiliation
A simple one-step approach is presented to fabricate high strength and tough ionogels by copolymerizing zwitterionic monomers and monomers rich in functional groups capable of forming hydrogen bonds within an ionic liquid. The electrostatic adsorption of ionic liquid by the polyzwitterionic segment induces the formation of a bicontinuous phase network structure consisting of a polymer-rich phase and a solvent-rich phase. Within this structure, a polymer-rich phase with hydrogen bonds dissipates energy and enhances the toughness of the ionogel, while an elastic solvent-rich phase facilitates significant strain. The prepared ionogels exhibit high fracture strength (8.89 MPa), toughness (41.12 MJ m−3), and Young's modulus (58.9 MPa). The critical point for triggering the formation of a bicontinuous phase network can be precisely controlled by the maximum adsorption capacity of the zwitterionic monomers for the ionic liquid. Ionogels at the critical point of bicontinuous phase network formation demonstrate excellent fatigue resistance, with residual strain of only ≈25% under 50% to 250% strain conditions, recovering to their original state within 5 s. Due to the widespread presence of electrostatic interactions, this strategy for constructing a bicontinuous phase network structure exhibits excellent adaptability across different ionic liquid systems.
中文翻译:
静电吸附触发微相分离诱导的具有双连续相网络结构的高强度和韧性离子凝胶
提出了一种简单的一步法,通过共聚两性离子单体和富含能够在离子液体中形成氢键的官能团的单体来制造高强度和韧性的离子凝胶。多晶性离子链段对离子液体的静电吸附诱导形成由富含聚合物的相和富含溶剂的相组成的双连续相网络结构。在这种结构中,具有氢键的富含聚合物的相耗散能量并增强离子凝胶的韧性,而弹性富含溶剂的相则促进了显着的应变。制备的离子凝胶表现出高断裂强度 (8.89 MPa)、韧性 (41.12 MJ m-3) 和杨氏模量 (58.9 MPa)。触发双连续相网络形成的临界点可以通过两性离子单体对离子液体的最大吸附容量来精确控制。处于双连续相网形成临界点的 Ionogels 表现出优异的抗疲劳性,在 50% 至 250% 应变条件下残余应变仅为 ≈25%,可在 5 s 内恢复到原始状态。由于静电相互作用的广泛存在,这种构建双连续相网络结构的策略在不同的离子液体系统中表现出优异的适应性。
更新日期:2024-09-17
中文翻译:
静电吸附触发微相分离诱导的具有双连续相网络结构的高强度和韧性离子凝胶
提出了一种简单的一步法,通过共聚两性离子单体和富含能够在离子液体中形成氢键的官能团的单体来制造高强度和韧性的离子凝胶。多晶性离子链段对离子液体的静电吸附诱导形成由富含聚合物的相和富含溶剂的相组成的双连续相网络结构。在这种结构中,具有氢键的富含聚合物的相耗散能量并增强离子凝胶的韧性,而弹性富含溶剂的相则促进了显着的应变。制备的离子凝胶表现出高断裂强度 (8.89 MPa)、韧性 (41.12 MJ m-3) 和杨氏模量 (58.9 MPa)。触发双连续相网络形成的临界点可以通过两性离子单体对离子液体的最大吸附容量来精确控制。处于双连续相网形成临界点的 Ionogels 表现出优异的抗疲劳性,在 50% 至 250% 应变条件下残余应变仅为 ≈25%,可在 5 s 内恢复到原始状态。由于静电相互作用的广泛存在,这种构建双连续相网络结构的策略在不同的离子液体系统中表现出优异的适应性。