当前位置:
X-MOL 学术
›
Water Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Temperature differentially regulates estuarine microbial N2O production along a salinity gradient
Water Research ( IF 11.4 ) Pub Date : 2024-09-15 , DOI: 10.1016/j.watres.2024.122454 Tie-Qiang Mao 1 , Yong Zhang 2 , Ya-Fei Ou 1 , Xiao-Fei Li 1 , Yan-Ling Zheng 3 , Xia Liang 1 , Min Liu 3 , Li-Jun Hou 1 , Hong-Po Dong 1
Water Research ( IF 11.4 ) Pub Date : 2024-09-15 , DOI: 10.1016/j.watres.2024.122454 Tie-Qiang Mao 1 , Yong Zhang 2 , Ya-Fei Ou 1 , Xiao-Fei Li 1 , Yan-Ling Zheng 3 , Xia Liang 1 , Min Liu 3 , Li-Jun Hou 1 , Hong-Po Dong 1
Affiliation
Nitrous oxide (N2 O) is atmospheric trace gas that contributes to climate change and affects stratospheric and ground-level ozone concentrations. Ammonia oxidizers and denitrifiers contribute to N2 O emissions in estuarine waters. However, as an important climate factor, how temperature regulates microbial N2 O production in estuarine water remains unclear. Here, we have employed stable isotope labeling techniques to demonstrate that the N2 O production in estuarine waters exhibited differential thermal response patterns between nearshore and offshore regions. The optimal temperatures (T opt ) for N2 O production rates (N2 OR) were higher at nearshore than offshore sites. 15 N-labeled nitrite (15 NO2 - ) experiments revealed that at the nearshore sites dominated by ammonia-oxidizing bacteria (AOB), the thermal tolerance of 15 N-N2 OR increases with increasing salinity, suggesting that N2 O production by AOB-driven nitrifier denitrification may be co-regulated by temperature and salinity. Metatranscriptomic and metagenomic analyses of enriched water samples revealed that the denitrification pathway of AOB is the primary source of N2 O, while clade II N2 O-reducers dominated N2 O consumption. Temperature regulated the expression patterns of nitrite reductase (nirK ) and nitrous oxide reductase (nosZ ) genes from different sources, thereby influencing N2 O emissions in the system. Our findings contribute to understanding the sources of N2 O in estuarine waters and their response to global warming.
中文翻译:
温度沿盐度梯度对河口微生物 N2O 的产生进行差异调节
一氧化二氮 (N2O) 是大气中的微量气体,会导致气候变化并影响平流层和地面臭氧浓度。氨氧化剂和反硝化剂会导致河口水域的 N2O 排放。然而,作为一个重要的气候因素,温度如何调节河口水中微生物 N2O 的产生仍不清楚。在这里,我们采用了稳定同位素标记技术来证明河口水域的 N2O 产生在近岸和近海地区之间表现出不同的热响应模式。近岸 N2O 生产率 (N2OR) 的最佳温度 (Topt) 高于近海站点。15N 标记的亚硝酸盐 (15NO2-) 实验表明,在以氨氧化细菌 (AOB) 为主的近岸站点,15N-N2OR 的热耐受性随着盐度的增加而增加,表明 AOB 驱动的硝化剂反硝化产生的 N2O 可能受温度和盐度的共同调节。富集水样品的宏转录组学和宏基因组分析显示,AOB 的反硝化途径是 N2O 的主要来源,而进化枝 II N2O 还原剂在 N2O 消费中占主导地位。温度调节来自不同来源的亚硝酸盐还原酶 (nirK) 和一氧化二氮还原酶 (nosZ) 基因的表达模式,从而影响系统中的 N2O 排放。我们的发现有助于了解河口水域中 N2O 的来源及其对全球变暖的反应。
更新日期:2024-09-15
中文翻译:
温度沿盐度梯度对河口微生物 N2O 的产生进行差异调节
一氧化二氮 (N2O) 是大气中的微量气体,会导致气候变化并影响平流层和地面臭氧浓度。氨氧化剂和反硝化剂会导致河口水域的 N2O 排放。然而,作为一个重要的气候因素,温度如何调节河口水中微生物 N2O 的产生仍不清楚。在这里,我们采用了稳定同位素标记技术来证明河口水域的 N2O 产生在近岸和近海地区之间表现出不同的热响应模式。近岸 N2O 生产率 (N2OR) 的最佳温度 (Topt) 高于近海站点。15N 标记的亚硝酸盐 (15NO2-) 实验表明,在以氨氧化细菌 (AOB) 为主的近岸站点,15N-N2OR 的热耐受性随着盐度的增加而增加,表明 AOB 驱动的硝化剂反硝化产生的 N2O 可能受温度和盐度的共同调节。富集水样品的宏转录组学和宏基因组分析显示,AOB 的反硝化途径是 N2O 的主要来源,而进化枝 II N2O 还原剂在 N2O 消费中占主导地位。温度调节来自不同来源的亚硝酸盐还原酶 (nirK) 和一氧化二氮还原酶 (nosZ) 基因的表达模式,从而影响系统中的 N2O 排放。我们的发现有助于了解河口水域中 N2O 的来源及其对全球变暖的反应。