当前位置:
X-MOL 学术
›
Water Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Disinfectant control in drinking water networks: Integrating advection–dispersion–reaction models and byproduct constraints
Water Research ( IF 11.4 ) Pub Date : 2024-09-16 , DOI: 10.1016/j.watres.2024.122441 Salma M Elsherif 1 , Ahmad F Taha 2 , Ahmed A Abokifa 3
Water Research ( IF 11.4 ) Pub Date : 2024-09-16 , DOI: 10.1016/j.watres.2024.122441 Salma M Elsherif 1 , Ahmad F Taha 2 , Ahmed A Abokifa 3
Affiliation
Effective disinfection is essential for maintaining water quality standards in distribution networks. Chlorination, as the most used technique, ensures safe water by maintaining sufficient chlorine residuals but also leads to the formation of disinfection byproducts (DBPs). These DBPs pose health risks, highlighting the need for chlorine injection control (CIC) by booster stations to balance safety and DBPs formation. Prior studies have followed various approaches to address this research problem. However, most of these studies overlook the changing flow conditions and their influence on the evolution of the chlorine and DBPs concentrations by integrating simplified transport-reaction models into CIC. In contrast, this paper proposes a novel CIC method that: (i) integrates multi-species dynamics, (ii) allows for a more accurate representation of the reaction dynamics of chlorine, other substances, and the resulting DBPs formation, and (iii) optimizes for the regulation of chlorine concentrations subject to EPA mandates thereby mitigating network-wide DBPs formation. The novelty of this study lies in its incorporation of time-dependent controllability analysis that captures the control coverage of each booster station. The effectiveness of the proposed CIC method is demonstrated through its application and validation via numerical case studies on different water networks with varying scales, initial conditions, and parameters.
中文翻译:
饮用水管网中的消毒剂控制:整合平流-扩散-反应模型和副产物约束
有效消毒对于维持配水管网的水质标准至关重要。氯化作为最常用的技术,通过保持足够的氯残留来确保安全的水,但也会导致消毒副产物 (DBP) 的形成。这些 DBP 构成健康风险,凸显了增压站需要控制氯气注入 (CIC) 以平衡安全性和 DBP 形成。以前的研究遵循了各种方法来解决这个研究问题。然而,这些研究中的大多数通过将简化的传递反应模型集成到 CIC 中,忽略了不断变化的流动条件及其对氯和 DBPs 浓度变化的影响。相比之下,本文提出了一种新的 CIC 方法,该方法:(i) 整合多物种动力学,(ii) 允许更准确地表示氯、其他物质的反应动力学以及由此产生的 DBP 形成,以及 (iii) 优化受 EPA 要求约束的氯浓度的调节,从而减轻网络范围的 DBP 形成。这项研究的新颖之处在于它结合了瞬态可控性分析,该分析捕获了每个升压站的控制覆盖率。通过对具有不同规模、初始条件和参数的不同供水网络进行数值案例研究的应用和验证,证明了所提出的 CIC 方法的有效性。
更新日期:2024-09-16
中文翻译:
饮用水管网中的消毒剂控制:整合平流-扩散-反应模型和副产物约束
有效消毒对于维持配水管网的水质标准至关重要。氯化作为最常用的技术,通过保持足够的氯残留来确保安全的水,但也会导致消毒副产物 (DBP) 的形成。这些 DBP 构成健康风险,凸显了增压站需要控制氯气注入 (CIC) 以平衡安全性和 DBP 形成。以前的研究遵循了各种方法来解决这个研究问题。然而,这些研究中的大多数通过将简化的传递反应模型集成到 CIC 中,忽略了不断变化的流动条件及其对氯和 DBPs 浓度变化的影响。相比之下,本文提出了一种新的 CIC 方法,该方法:(i) 整合多物种动力学,(ii) 允许更准确地表示氯、其他物质的反应动力学以及由此产生的 DBP 形成,以及 (iii) 优化受 EPA 要求约束的氯浓度的调节,从而减轻网络范围的 DBP 形成。这项研究的新颖之处在于它结合了瞬态可控性分析,该分析捕获了每个升压站的控制覆盖率。通过对具有不同规模、初始条件和参数的不同供水网络进行数值案例研究的应用和验证,证明了所提出的 CIC 方法的有效性。