当前位置:
X-MOL 学术
›
J. Chem. Theory Comput.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Completely Multipolar Model as a General Framework for Many-Body Interactions as Illustrated for Water
Journal of Chemical Theory and Computation ( IF 5.7 ) Pub Date : 2024-09-17 , DOI: 10.1021/acs.jctc.4c00812 Joseph P Heindel 1, 2 , Selim Sami 1 , Teresa Head-Gordon 1, 2, 3
Journal of Chemical Theory and Computation ( IF 5.7 ) Pub Date : 2024-09-17 , DOI: 10.1021/acs.jctc.4c00812 Joseph P Heindel 1, 2 , Selim Sami 1 , Teresa Head-Gordon 1, 2, 3
Affiliation
We introduce a general framework for many-body force fields, the Completely Multipolar Model (CMM), that utilizes multipolar electrical moments modulated by exponential decay of electron density as a common functional form for all terms of an energy decomposition analysis of intermolecular interactions. With this common functional form, the CMM model establishes well-formulated damped tensors that reach the correct asymptotes at both long- and short-range while formally ensuring no short-range catastrophes. CMM describes the separable EDA terms of dispersion, exchange polarization, and Pauli repulsion with short-ranged anisotropy, polarization as intramolecular charge fluctuations and induced dipoles, while charge transfer describes explicit movement of charge between molecules, and naturally describes many-body charge transfer by coupling into the polarization equations. We also utilize a new one-body potential that accounts for intramolecular polarization by including an electric field-dependent correction to the Morse potential to ensure that CMM reproduces all physically relevant monomer properties including the dipole moment, molecular polarizability, and dipole and polarizability derivatives. The quality of CMM is illustrated through agreement of individual terms of the EDA and excellent extrapolation to energies and geometries of an extensive validation set of water cluster data.
中文翻译:
完全多极模型作为多体相互作用的一般框架,如水所示
我们介绍了一个多体力场的通用框架,即完全多极模型 (CMM),它利用由电子密度指数衰减调制的多极电矩作为分子间相互作用能量分解分析的所有项的通用函数形式。通过这种常见的函数形式,CMM 模型建立了精心制定的阻尼张量,这些张量在长距离和短距离上都达到正确的渐近线,同时正式确保没有短距离灾难。CMM 描述了可分离的 EDA 项,即色散、交换极化和具有短程各向异性的泡利排斥,极化作为分子内电荷波动和感应偶极子,而电荷转移描述了分子之间电荷的显式运动,并自然地描述了通过耦合到极化方程中的多体电荷转移。我们还利用一种新的单体电位,通过包括对莫尔斯电位的电场依赖性校正来解释分子内极化,以确保 CMM 再现所有物理相关的单体特性,包括偶极矩、分子极化率以及偶极子和极化率导数。CMM 的质量是通过 EDA 的各个术语的一致以及对广泛的水集群数据验证集的能量和几何形状的出色推断来说明的。
更新日期:2024-09-17
中文翻译:
完全多极模型作为多体相互作用的一般框架,如水所示
我们介绍了一个多体力场的通用框架,即完全多极模型 (CMM),它利用由电子密度指数衰减调制的多极电矩作为分子间相互作用能量分解分析的所有项的通用函数形式。通过这种常见的函数形式,CMM 模型建立了精心制定的阻尼张量,这些张量在长距离和短距离上都达到正确的渐近线,同时正式确保没有短距离灾难。CMM 描述了可分离的 EDA 项,即色散、交换极化和具有短程各向异性的泡利排斥,极化作为分子内电荷波动和感应偶极子,而电荷转移描述了分子之间电荷的显式运动,并自然地描述了通过耦合到极化方程中的多体电荷转移。我们还利用一种新的单体电位,通过包括对莫尔斯电位的电场依赖性校正来解释分子内极化,以确保 CMM 再现所有物理相关的单体特性,包括偶极矩、分子极化率以及偶极子和极化率导数。CMM 的质量是通过 EDA 的各个术语的一致以及对广泛的水集群数据验证集的能量和几何形状的出色推断来说明的。