当前位置:
X-MOL 学术
›
J. Hazard. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Mechanism for airborne ozone decomposition on X-MIL-53(Fe) (X = H, NH2, NO2)
Journal of Hazardous Materials ( IF 12.2 ) Pub Date : 2024-09-16 , DOI: 10.1016/j.jhazmat.2024.135849 Jiami Ma, Zhixin Hu, Weihong Guo, Cheng Ni, Pan Li, Bosheng Chen, Songhua Chen, Jinlong Wang, Yanbing Guo
Journal of Hazardous Materials ( IF 12.2 ) Pub Date : 2024-09-16 , DOI: 10.1016/j.jhazmat.2024.135849 Jiami Ma, Zhixin Hu, Weihong Guo, Cheng Ni, Pan Li, Bosheng Chen, Songhua Chen, Jinlong Wang, Yanbing Guo
Ground−level ozone (O3 ) pollution poses a significant threat to both ecosystem sustainability and human health. The catalytic decomposition of O3 presents as a promising technology to address the issues of O3 pollution. This study undertook the synthesis of various functionalized metal−organic framework (MOF) catalysts (i.e., X-MIL-53(Fe) (X = H, NH2 , NO3 )) to delve into the influence of ligand functional groups on skeletal structure and catalytic efficacy, particularly focusing on unraveling the mechanism of O3 catalytic decomposition under humid conditions. NH2 -MIL-53(Fe) catalyst achieved complete O3 decomposition under ambient temperature and high humidity conditions (RH=75 %), exhibiting a reaction rates (mol·m−2 ·s−1 ) 129 and 10.5 times greater than that of MIL-53(Fe) and NO2 -MIL-53(Fe). The NH2 group promotes electron flow within the backbone towards the hydroxyl group (OH) linked to Fe atom. In humid O3 , H2 O molecules augment the interaction between O3 and NH2 -MIL-53(Fe), and OH is converted to·O2 − after deprotonation, promoting O3 decomposition. Additionally, leveraging three−dimensional (3D) printing technology, a monolithic catalyst for O3 decomposition was prepared for application. This study not only advances understanding of the mechanisms underlying O3 decomposition but also offers practical solutions for addressing O3 pollution at humid conditions.
中文翻译:
X-MIL-53(Fe) 上空气中臭氧分解的机理 (X = H, NH2, NO2)
地面臭氧 (O3) 污染对生态系统可持续性和人类健康构成重大威胁。O3 的催化分解是解决 O3 污染问题的一种很有前途的技术。本研究合成了各种功能化金属有机框架 (MOF) 催化剂 (即 X-MIL-53(Fe) (X = H, NH2, NO3)),以深入研究配体官能团对骨架结构和催化效能的影响,特别关注揭示潮湿条件下 O3 催化分解的机理。NH2-MIL-53(Fe) 催化剂在环境温度和高湿条件 (RH=75%) 下实现了 O3 的完全分解,反应速率 (mol·m-2·s-1) 是 MIL-53(Fe) 和 NO2-MIL-53(Fe) 的 129 倍和 10.5 倍。NH2 基团促进主链内的电子流向与 Fe 原子相连的羟基 (OH)。在潮湿的 O3 中,H2O 分子增强了 O3 与 NH2-MIL-53(Fe) 之间的相互作用,OH 转化为·去质子化后 O2−,促进 O3 分解。此外,利用三维 (3D) 打印技术,制备了用于 O3 分解的整体催化剂以供应用。这项研究不仅促进了对 O3 分解机制的理解,还为解决潮湿条件下的 O3 污染提供了实用的解决方案。
更新日期:2024-09-16
中文翻译:
X-MIL-53(Fe) 上空气中臭氧分解的机理 (X = H, NH2, NO2)
地面臭氧 (O3) 污染对生态系统可持续性和人类健康构成重大威胁。O3 的催化分解是解决 O3 污染问题的一种很有前途的技术。本研究合成了各种功能化金属有机框架 (MOF) 催化剂 (即 X-MIL-53(Fe) (X = H, NH2, NO3)),以深入研究配体官能团对骨架结构和催化效能的影响,特别关注揭示潮湿条件下 O3 催化分解的机理。NH2-MIL-53(Fe) 催化剂在环境温度和高湿条件 (RH=75%) 下实现了 O3 的完全分解,反应速率 (mol·m-2·s-1) 是 MIL-53(Fe) 和 NO2-MIL-53(Fe) 的 129 倍和 10.5 倍。NH2 基团促进主链内的电子流向与 Fe 原子相连的羟基 (OH)。在潮湿的 O3 中,H2O 分子增强了 O3 与 NH2-MIL-53(Fe) 之间的相互作用,OH 转化为·去质子化后 O2−,促进 O3 分解。此外,利用三维 (3D) 打印技术,制备了用于 O3 分解的整体催化剂以供应用。这项研究不仅促进了对 O3 分解机制的理解,还为解决潮湿条件下的 O3 污染提供了实用的解决方案。