当前位置:
X-MOL 学术
›
Comput. Aided Civ. Infrastruct. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Data‐driven model for seismic assessment, design, and retrofit of structures using explainable artificial intelligence
Computer-Aided Civil and Infrastructure Engineering ( IF 8.5 ) Pub Date : 2024-09-17 , DOI: 10.1111/mice.13338 Khurram Shabbir, Mohamed Noureldin, Sung‐Han Sim
Computer-Aided Civil and Infrastructure Engineering ( IF 8.5 ) Pub Date : 2024-09-17 , DOI: 10.1111/mice.13338 Khurram Shabbir, Mohamed Noureldin, Sung‐Han Sim
Retrofitting building designs is crucial given the global aging infrastructure and increased in frequency of natural hazards like earthquakes. While traditional data‐driven models are widely used for predicting building conditions, there has been limited exploration of recent artificial intelligence (AI) techniques in structural design. This study introduces a novel explainable AI framework that utilizes data‐driven models for assessing, designing, and retrofitting of structures. The framework highlights the key global features of the model and further investigates them locally to adjust the input design parameters. It suggests the necessary changes in these inputs to achieve the desired structural performance. To achieve this, the framework employs interpretability techniques such as feature importance, feature interactions, Shapley Additive exPlanations, local interpretable model‐agnostic explanations, partial dependence plot (PDP), and individual conditional expectation to highlight the important features. Additionally, a novel counterfactual) technique is applied for the first time as a design tool in seismic assessment and retrofitting of structures. The effectiveness of this framework is validated on a real benchmark structure through nonlinear time history analysis and natural earthquakes. The results show that the proposed framework is highly effective, especially under design‐level earthquake conditions in achieving the necessary change in stiffness and strength of structures to meet the required seismic design objectives across different earthquake scenarios. This framework holds promise for wider adoption and applications in various other structural and civil engineering domains.
中文翻译:
使用可解释的人工智能进行结构地震评估、设计和改造的数据驱动模型
鉴于全球基础设施老化以及地震等自然灾害发生频率的增加,改造建筑设计至关重要。虽然传统的数据驱动模型广泛用于预测建筑状况,但最近在结构设计中的人工智能 (AI) 技术的探索有限。这项研究引入了一种新颖的可解释人工智能框架,该框架利用数据驱动模型来评估、设计和改造结构。该框架突出了模型的关键全局特征,并在本地进一步研究它们以调整输入设计参数。它建议对这些投入进行必要的改变,以实现所需的结构性能。为了实现这一目标,该框架采用了可解释性技术,例如特征重要性、特征交互、Shapley 加法解释、局部可解释模型不可知解释、部分依赖图 (PDP) 和个体条件期望来突出重要特征。此外,一种新颖的反事实技术首次被用作地震评估和结构改造的设计工具。通过非线性时程分析和自然地震,在真实的基准结构上验证了该框架的有效性。结果表明,所提出的框架非常有效,特别是在设计级别的地震条件下,可以实现结构刚度和强度的必要变化,以满足不同地震场景下所需的抗震设计目标。该框架有望在其他各种结构和土木工程领域得到更广泛的采用和应用。
更新日期:2024-09-17
中文翻译:
使用可解释的人工智能进行结构地震评估、设计和改造的数据驱动模型
鉴于全球基础设施老化以及地震等自然灾害发生频率的增加,改造建筑设计至关重要。虽然传统的数据驱动模型广泛用于预测建筑状况,但最近在结构设计中的人工智能 (AI) 技术的探索有限。这项研究引入了一种新颖的可解释人工智能框架,该框架利用数据驱动模型来评估、设计和改造结构。该框架突出了模型的关键全局特征,并在本地进一步研究它们以调整输入设计参数。它建议对这些投入进行必要的改变,以实现所需的结构性能。为了实现这一目标,该框架采用了可解释性技术,例如特征重要性、特征交互、Shapley 加法解释、局部可解释模型不可知解释、部分依赖图 (PDP) 和个体条件期望来突出重要特征。此外,一种新颖的反事实技术首次被用作地震评估和结构改造的设计工具。通过非线性时程分析和自然地震,在真实的基准结构上验证了该框架的有效性。结果表明,所提出的框架非常有效,特别是在设计级别的地震条件下,可以实现结构刚度和强度的必要变化,以满足不同地震场景下所需的抗震设计目标。该框架有望在其他各种结构和土木工程领域得到更广泛的采用和应用。