当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Integrating Multiple Strategies Using Biotechnology to Design High-Performance Electrocatalysts for Hydrogen and Oxygen Evolution
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2024-09-17 , DOI: 10.1002/adfm.202413072 Lin Ge, Chang Liu, Tingting Xue, Yiyang Kang, Yining Sun, Yuxi Chen, Jiajie Wu, Kai Teng, Lei Li, Qing Qu
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2024-09-17 , DOI: 10.1002/adfm.202413072 Lin Ge, Chang Liu, Tingting Xue, Yiyang Kang, Yining Sun, Yuxi Chen, Jiajie Wu, Kai Teng, Lei Li, Qing Qu
Combining multiple design strategies often enhances catalyst performance but usually comes with high costs and low reproducibility. A technique that enhances catalyst performance in multiple strategies is urgently needed. Herein, a novel bioregulation technique is introduced, allowing simultaneous control over morphology, particle size, doping, interface engineering, and electronic properties. Bioregulation technique utilizes the soluble extracellular polymer from Aspergillus niger as a templating agent to construct high-performance catalysts for hydrogen and oxygen evolution reaction (HER and OER). This technique controls catalyst morphology, introduces biological N and S doping, and regulates the electronic structure of the catalyst surface. Biomolecule modification enhances surface hydrophilicity, and the nanostructure increases surface roughness and gas-release efficiency. Theoretical calculations show that the bioregulation technique shortens the d/p-band center, optimizing reaction intermediate adsorption and desorption. The Bio-Pt/Co3O4 catalyst with trace Pt on the surface, designed with these strategies, achieves HER (η10 of 42 mV), OER (η10 of 221 mV), and overall water-splitting performance (1.51 V at 10 mA cm−2), maintaining stability for over 50 h, outperforming most Pt-based catalysts. Notably, using spent lithium-ion battery cathodes leachate, rich in Co2⁺, successfully replicates the experiment. This approach holds promise as a mainstream method for synthesizing high-performance materials in the future.
中文翻译:
利用生物技术整合多种策略,设计用于析氢和析氧的高性能电催化剂
结合多种设计策略通常会提高催化剂性能,但通常成本高且重现性低。迫切需要一种在多种策略中提高催化剂性能的技术。在此,引入了一种新的生物调节技术,允许同时控制形态、粒径、掺杂、界面工程和电子特性。生物调节技术利用黑曲霉的可溶性细胞外聚合物作为模板剂来构建用于析氢和析氧反应 (HER 和 OER) 的高性能催化剂。该技术控制催化剂形态,引入生物 N 和 S 掺杂,并调节催化剂表面的电子结构。生物分子修饰增强了表面亲水性,纳米结构提高了表面粗糙度和气体释放效率。理论计算表明,生物调控技术缩短了 d/p 带中心,优化了反应中间体的吸附和解吸。采用这些策略设计的表面带有痕量 Pt 的 Bio-Pt/Co3O4 催化剂可实现 HER(42 mV 的 η 10)、OER(221 mV 的 η10)和整体分解水性能(10 mA-2 时为 1.51 V),保持稳定性超过 50 小时,优于大多数 Pt 基催化剂。值得注意的是,使用富含 Co2⁺ 的废锂离子电池阴极渗滤液成功复制了实验。这种方法有望成为未来合成高性能材料的主流方法。
更新日期:2024-09-17
中文翻译:
利用生物技术整合多种策略,设计用于析氢和析氧的高性能电催化剂
结合多种设计策略通常会提高催化剂性能,但通常成本高且重现性低。迫切需要一种在多种策略中提高催化剂性能的技术。在此,引入了一种新的生物调节技术,允许同时控制形态、粒径、掺杂、界面工程和电子特性。生物调节技术利用黑曲霉的可溶性细胞外聚合物作为模板剂来构建用于析氢和析氧反应 (HER 和 OER) 的高性能催化剂。该技术控制催化剂形态,引入生物 N 和 S 掺杂,并调节催化剂表面的电子结构。生物分子修饰增强了表面亲水性,纳米结构提高了表面粗糙度和气体释放效率。理论计算表明,生物调控技术缩短了 d/p 带中心,优化了反应中间体的吸附和解吸。采用这些策略设计的表面带有痕量 Pt 的 Bio-Pt/Co3O4 催化剂可实现 HER(42 mV 的 η 10)、OER(221 mV 的 η10)和整体分解水性能(10 mA-2 时为 1.51 V),保持稳定性超过 50 小时,优于大多数 Pt 基催化剂。值得注意的是,使用富含 Co2⁺ 的废锂离子电池阴极渗滤液成功复制了实验。这种方法有望成为未来合成高性能材料的主流方法。