当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Bioinspired Spectrally Selective Phase-Change Composites for Enhanced Solar Thermal Energy Storage
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2024-09-17 , DOI: 10.1002/adfm.202412066 Qiao Xu, Xianglei Liu, Qingyang Luo, Haichen Yao, Yang Tian, Jianguo Wang, Shushan Lv, Yimin Xuan, Mohammed Farid
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2024-09-17 , DOI: 10.1002/adfm.202412066 Qiao Xu, Xianglei Liu, Qingyang Luo, Haichen Yao, Yang Tian, Jianguo Wang, Shushan Lv, Yimin Xuan, Mohammed Farid
Integrating solar thermal conversion with phase change materials (PCMs) offers a promising pathway for continuous thermal energy generation with a zero-carbon footprint. However, substantial infrared radiation losses at elevated temperatures often hinder the efficiency of such integrated systems. Inspired by the thermoregulation mechanisms of polar bears, this work introduces composite PCMs with spectrally selective absorption to enhance solar thermal energy storage efficiency. These composite phase change materials (CPCMs), featuring densely packed SiC ceramic grains with high porosity, exhibit a thermal conductivity of up to 14 W m−1 K−1 and an energy storage density of 195.1 kJ kg−1. The incorporation of nanoparticle-coated foil induces a plasmonic effect that increases solar absorptivity to 90.57% and reduces infrared emissivity from 71.94% to 7.47%. Consequently, the solar thermal storage efficiency is significantly increased from 54.56% to 81.65% at 500 K, effectively addressing the challenges associated with high-temperature solar thermal storage. Additionally, the low infrared emissivity of the c (PNC), combined with the inherent heat absorption properties of PCMs, enables infrared stealth functionality. These multifunctional CPCMs demonstrate considerable potential for advancing high-temperature solar thermal storage technologies and other heat-related applications.
中文翻译:
用于增强太阳能热能存储的仿生光谱选择性相变复合材料
将太阳能热转换与相变材料 (PCM) 相结合,为零碳足迹的连续热能生成提供了一条有前途的途径。然而,高温下大量的红外辐射损失通常会阻碍此类集成系统的效率。受北极熊体温调节机制的启发,这项工作引入了具有光谱选择性吸收的复合 PCM,以提高太阳能热能存储效率。这些复合相变材料 (CPCM) 具有具有高孔隙率的致密堆积 SiC 陶瓷颗粒,具有高达 14 W m-1 K-1 的热导率和 195.1 kJ kg-1 的储能密度。纳米颗粒涂层箔的掺入会诱导等离子体效应,将太阳吸收率提高到 90.57%,并将红外发射率从 71.94% 降低到 7.47%。因此,在 500 K 时,太阳能储热效率从 54.56% 显著提高到 81.65%,有效解决了高温太阳能储热带来的挑战。此外,c (PNC) 的低红外发射率与 PCM 固有的热吸收特性相结合,可实现红外隐身功能。这些多功能 CPCM 在推进高温太阳能储热技术和其他与热量相关的应用方面表现出了巨大的潜力。
更新日期:2024-09-17
中文翻译:
用于增强太阳能热能存储的仿生光谱选择性相变复合材料
将太阳能热转换与相变材料 (PCM) 相结合,为零碳足迹的连续热能生成提供了一条有前途的途径。然而,高温下大量的红外辐射损失通常会阻碍此类集成系统的效率。受北极熊体温调节机制的启发,这项工作引入了具有光谱选择性吸收的复合 PCM,以提高太阳能热能存储效率。这些复合相变材料 (CPCM) 具有具有高孔隙率的致密堆积 SiC 陶瓷颗粒,具有高达 14 W m-1 K-1 的热导率和 195.1 kJ kg-1 的储能密度。纳米颗粒涂层箔的掺入会诱导等离子体效应,将太阳吸收率提高到 90.57%,并将红外发射率从 71.94% 降低到 7.47%。因此,在 500 K 时,太阳能储热效率从 54.56% 显著提高到 81.65%,有效解决了高温太阳能储热带来的挑战。此外,c (PNC) 的低红外发射率与 PCM 固有的热吸收特性相结合,可实现红外隐身功能。这些多功能 CPCM 在推进高温太阳能储热技术和其他与热量相关的应用方面表现出了巨大的潜力。