当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Biomolecular Neuristors from Functionalized Lipid Membranes
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2024-09-16 , DOI: 10.1002/adfm.202409296 Michelle Makhoul Mansour, Joshua J. Maraj, Robert Jordan Pyron, Francisco N. Barrera, Stephen A. Sarles
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2024-09-16 , DOI: 10.1002/adfm.202409296 Michelle Makhoul Mansour, Joshua J. Maraj, Robert Jordan Pyron, Francisco N. Barrera, Stephen A. Sarles
Modeled after biological neurons, neuristors are emerging hardware that generate recurring voltage spikes in response to electrical stimulation. This type of excitability can enable transistor-free spiking neural networks for efficient signal processing and computing. Yet, most neuristors consist of circuits containing numerous devices, thus complicating fabrication and increasing size, power usage, and cost. In contrast, it is shown that a single, 5nm-thick lipid membrane functionalized with voltage-activated peptides functions as a two-terminal, ultra-low power (fW-pW) artificial neuristor in response to supplied current. Specifically, the biomolecular membrane generates stochastic voltage oscillations (10–150 mV) in response to direct currents (|5–40| pA), and is capable of generating two distinct types of action potentials fast (≈1–50 ms) and slow (≈1–2 s) spikes via distinct physical mechanisms. This discovery showcases the inherent multifunctionality and modularity of engineered biomembranes, and it contributes to an expanding suite of ionic and biomolecular devices designed with synapse and neuron functionalities for emerging computing architectures.
中文翻译:
来自功能化脂质膜的生物分子神经分子
以生物神经元为模型,神经炎是新兴的硬件,可响应电刺激产生反复出现的电压尖峰。这种类型的兴奋性可以使无晶体管的尖峰神经网络实现高效的信号处理和计算。然而,大多数神经质由包含许多器件的电路组成,从而使制造复杂化并增加了尺寸、功耗和成本。相比之下,研究表明,用电压激活肽功能化的单个 5nm 厚的脂质膜在响应提供的电流时起到双末端、超低功耗 (fW-pW) 人工神经的作用。具体来说,生物分子膜响应直流电 (|5–40| pA) 产生随机电压振荡 (10–150 mV),并且能够通过不同的物理机制产生两种不同类型的动作电位快速 (≈1–50 ms) 和慢速 (≈1–2 s) 尖峰。这一发现展示了工程生物膜固有的多功能性和模块化,并有助于为新兴计算架构设计具有突触和神经元功能的离子和生物分子设备扩展套件。
更新日期:2024-09-16
中文翻译:
来自功能化脂质膜的生物分子神经分子
以生物神经元为模型,神经炎是新兴的硬件,可响应电刺激产生反复出现的电压尖峰。这种类型的兴奋性可以使无晶体管的尖峰神经网络实现高效的信号处理和计算。然而,大多数神经质由包含许多器件的电路组成,从而使制造复杂化并增加了尺寸、功耗和成本。相比之下,研究表明,用电压激活肽功能化的单个 5nm 厚的脂质膜在响应提供的电流时起到双末端、超低功耗 (fW-pW) 人工神经的作用。具体来说,生物分子膜响应直流电 (|5–40| pA) 产生随机电压振荡 (10–150 mV),并且能够通过不同的物理机制产生两种不同类型的动作电位快速 (≈1–50 ms) 和慢速 (≈1–2 s) 尖峰。这一发现展示了工程生物膜固有的多功能性和模块化,并有助于为新兴计算架构设计具有突触和神经元功能的离子和生物分子设备扩展套件。