International Journal of Numerical Methods for Heat & Fluid Flow ( IF 4.0 ) Pub Date : 2024-09-17 , DOI: 10.1108/hff-07-2024-0503 Madiha Ajmal, Rashid Mehmood, Noreen Sher Akbar, Taseer Muhammad
Purpose
This study aims to focuse on the flow behavior of a specific nanofluid composed of blood-based iron oxide nanoparticles, combined with motile gyrotactic microorganisms, in a ciliated channel with electroosmosis.
Design/methodology/approach
This study applies a powerful mathematical model to examine the combined impacts of bio convection and electrokinetic forces on nanofluid flow. The presence of cilia, which are described as wave-like motions on the channel walls, promotes fluid propulsion, which improves mixing and mass transport. The velocity and dispersion of nanoparticles and microbes are modified by the inclusion of electroosmosis, which is stimulated by an applied electric field. This adds a significant level of complexity.
Findings
To ascertain their impact on flow characteristics, important factors such as bio convection Rayleigh number, Grashoff number, Peclet number and Lewis number are varied. The results demonstrate that while the gyrotactic activity of microorganisms contributes to the stability and homogeneity of the nanofluid distribution, electroosmotic forces significantly enhance fluid mixing and nanoparticle dispersion. This thorough study clarifies how to take advantage of electroosmosis and bio convection in ciliated micro channels to optimize nanofluid-based biomedical applications, such as targeted drug administration and improved diagnostic processes.
Originality/value
First paper discussed “Numerical Computation of Cilia Transport of Prandtl Nanofluid (Blood-Fe3O4) Enhancing Convective Heat Transfer along Micro Organisms under Electroosmotic effects in Wavy Capillaries”.
中文翻译:
普朗特纳米流体(血-Fe3O4)纤毛传输的计算研究在电渗效应下增强波状毛细血管中微生物的对流换热
目的
本研究旨在重点研究由基于血液的氧化铁纳米粒子与运动的旋转微生物结合组成的特定纳米流体在电渗纤毛通道中的流动行为。
设计/方法论/途径
这项研究应用强大的数学模型来研究生物对流和动电力对纳米流体流动的综合影响。纤毛的存在被描述为通道壁上的波状运动,促进流体推进,从而改善混合和质量运输。纳米颗粒和微生物的速度和分散度通过引入电渗来改变,电渗是由施加的电场刺激的。这显着增加了复杂性。
发现
为了确定它们对流动特性的影响,生物对流瑞利数、格拉肖夫数、佩克莱特数和路易斯数等重要因素是多种多样的。结果表明,虽然微生物的旋转活性有助于纳米流体分布的稳定性和均匀性,但电渗力显着增强流体混合和纳米颗粒分散。这项彻底的研究阐明了如何利用纤毛微通道中的电渗和生物对流来优化基于纳米流体的生物医学应用,例如靶向药物管理和改进的诊断过程。
原创性/价值
第一篇论文讨论了“普朗特纳米流体(血-Fe 3 O 4 )纤毛传输的数值计算,增强了波状毛细管中电渗效应下微生物的对流传热”。