当前位置: X-MOL 学术Phys. Rev. D › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Deep learning for cosmological parameter inference from a dark matter halo density field
Physical Review D ( IF 4.6 ) Pub Date : 2024-09-16 , DOI: 10.1103/physrevd.110.063531
Zhiwei Min, Xu Xiao, Jiacheng Ding, Liang Xiao, Jie Jiang, Donglin Wu, Qiufan Lin, Yang Wang, Shuai Liu, Zhixin Chen, Xiangru Li, Jinqu Zhang, Le Zhang, Xiao-Dong Li

We propose a lightweight deep convolutional neural network (lCNN) to estimate cosmological parameters from simulated three-dimensional dark matter (DM) halo distributions and associated statistics. The training dataset comprises 2000 realizations of a cubic box with a side length of 1000h1Mpc and interpolated over a cubic grid of 3003 voxels, with each simulation produced using 5123 DM particles and 5123 neutrinos. Under the flat ΛCDM model, simulations vary standard six cosmological parameters including Ωm, Ωb, h, ns, σ8, and w, along with the neutrino mass sum Mν. We find that (i) within the framework of lCNN, extracting large-scale structure information is more efficient from the halo density field compared to relying on the statistical quantities including the power spectrum, the two-point correlation function, and the coefficients from wavelet scattering transform; (ii) combining the halo density field with its Fourier-transformed counterpart enhances predictions, while augmenting the training dataset with measured statistics further improves performance; (iii) achieving high accuracy in inferring Ωm, h, and σ8 by the neural network model, while being inefficient in predicting Ωb, ns, Mν, and w; and (iv) compared to the simple fully connected network trained with three statistical quantities, our CNN yields statistically reduced errors, showing improvements of approximately 23% for Ωm, 11% for h, 8% for ns, and 21% for σ8. Additionally, in comparison with the likelihood-based analysis on P(k) data, our CNN provides much tighter constraints on parameters, especially on Ωm and σ8. Our study emphasizes this lCNN-based novel approach in extracting large-scale structure information and estimating cosmological parameters.

中文翻译:


从暗物质晕密度场推断宇宙学参数的深度学习



我们建议使用 lig h t w 埃格 h t 深度卷积神经网络 w ork (lCNN) 从模拟 t 估计宇宙学参数 h 瑞德一毛钱 ns 离子暗物质 (DM) 晕分布 ns 及相关统计数据。训练数据集包含 2000 个实现 ns 一个边长为的立方体盒子 1000h1Mpc 并在立方网格上进行插值 3003 体素,每个模拟都是使用 5123 DM 颗粒和 5123 中微子。公寓下 ΛCDM 模型、模拟会改变标准的六个宇宙学参数,包括 Ωm , Ωb ,h,ns, σ8 、w 以及中微子质量和 Mν 。我们发现(i)在lCNN的框架内,与依赖功率谱、两点相关函数和小波系数等统计量相比,从晕密度场提取大规模结构信息更有效散射变换; (ii) 将光环密度场与其傅立叶变换对应项相结合可增强预测,同时用测量的统计数据扩充训练数据集可进一步提高性能; (iii) 实现高精度的推断 Ωm , 手 σ8 通过神经网络模型,但预测效率低下 Ωb , 纳秒, Mν 、 和 w; (iv) 与使用三个统计量训练的简单全连接网络相比,我们的 CNN 在统计上减少了错误,显示出约 23% 的改进 Ωm ,h 为 11%,ns 为 8%,以及 21% σ8 。 此外,与基于可能性的分析相比 P(k) 数据,我们的 CNN 对参数提供了更严格的约束,尤其是 Ωmσ8 。我们的研究强调了这种基于 lCNN 的新颖方法来提取大规模结构信息和估计宇宙学参数。
更新日期:2024-09-16
down
wechat
bug