当前位置:
X-MOL 学术
›
J. Am. Chem. Soc.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Breaking the Conversion-Selectivity Trade-Off in Methanol Synthesis from CO2 Using Dual Intimate Oxide/Metal Interfaces
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2024-09-16 , DOI: 10.1021/jacs.4c09106 Qimeng Sun, Xinyu Liu, Qingqing Gu, Zhihu Sun, Hengwei Wang, Lina Cao, Yuxing Xu, Shang Li, Bing Yang, Shiqiang Wei, Junling Lu
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2024-09-16 , DOI: 10.1021/jacs.4c09106 Qimeng Sun, Xinyu Liu, Qingqing Gu, Zhihu Sun, Hengwei Wang, Lina Cao, Yuxing Xu, Shang Li, Bing Yang, Shiqiang Wei, Junling Lu
The selective hydrogenation of carbon dioxide (CO2) to value-added chemicals, e.g., methanol, using green hydrogen retrieved from renewable resources is a promising approach for CO2 emission reduction and carbon resource utilization. However, this process suffers from the competing side reaction of reverse water–gas shift (RWGS) and methanol decomposition, which often leads to a strong conversion-selectivity trade-off and thus a poor methanol yield. Here, we report that InOx coating of PdCu bimetallic nanoparticles (NPs) to construct intimate InOx/Cu and InOx/PdIn dual interfaces enables the break of conversion-selectivity trade-off by achieving ∼80% methanol selectivity at ∼20% CO2 conversion close to the thermodynamic limit, far superior to that of conventional metal catalysts with a single active metal/oxide interface. Comprehensive microscopic and spectroscopic characterization revealed that the InOx/PdIn interface favors the activation of CO2 to formate, while the adjacent InOx/Cu interface readily converts formate intermediates to methoxy species in tandem, which thus cooperatively boosts methanol production. These findings of dual-interface synergies via oxide coating of bimetallic NPs open a new avenue to the design of active and selective catalysts for advanced catalysis.
中文翻译:
使用双紧密氧化物/金属界面打破 CO2 甲醇合成中的转化率-选择性权衡
使用从可再生资源中提取的绿色氢气将二氧化碳 (CO2) 选择性加氢成增值化学品,例如甲醇,是减少 CO2 排放和碳资源利用的一种很有前途的方法。然而,该工艺受到水-气反向转变 (RWGS) 和甲醇分解的竞争性副反应的影响,这通常会导致强烈的转化-选择性权衡,从而导致甲醇收率低。在这里,我们报道了 PdCu 双金属纳米颗粒 (NPs) 的 InOx 涂层以构建紧密的 InOx/Cu 和 InOx/PdIn 双界面,通过在接近热力学极限的 ∼20% CO2 转化率下实现 ∼80% 的甲醇选择性,打破了转化-选择性权衡,远优于具有单个活性金属/氧化物界面的传统金属催化剂。全面的显微和光谱表征表明,InOx/PdIn 界面有利于 CO2 活化为甲酸盐,而相邻的 InOx/Cu 界面很容易将甲酸盐中间体同时转化为甲氧基物质,从而协同促进甲醇的产生。这些通过双金属 NP 的氧化物包覆实现双界面协同效应的发现为高级催化活性和选择性催化剂的设计开辟了一条新途径。
更新日期:2024-09-16
中文翻译:
使用双紧密氧化物/金属界面打破 CO2 甲醇合成中的转化率-选择性权衡
使用从可再生资源中提取的绿色氢气将二氧化碳 (CO2) 选择性加氢成增值化学品,例如甲醇,是减少 CO2 排放和碳资源利用的一种很有前途的方法。然而,该工艺受到水-气反向转变 (RWGS) 和甲醇分解的竞争性副反应的影响,这通常会导致强烈的转化-选择性权衡,从而导致甲醇收率低。在这里,我们报道了 PdCu 双金属纳米颗粒 (NPs) 的 InOx 涂层以构建紧密的 InOx/Cu 和 InOx/PdIn 双界面,通过在接近热力学极限的 ∼20% CO2 转化率下实现 ∼80% 的甲醇选择性,打破了转化-选择性权衡,远优于具有单个活性金属/氧化物界面的传统金属催化剂。全面的显微和光谱表征表明,InOx/PdIn 界面有利于 CO2 活化为甲酸盐,而相邻的 InOx/Cu 界面很容易将甲酸盐中间体同时转化为甲氧基物质,从而协同促进甲醇的产生。这些通过双金属 NP 的氧化物包覆实现双界面协同效应的发现为高级催化活性和选择性催化剂的设计开辟了一条新途径。