当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhanced Performance and Stability of Perovskite Solar Cells Through Surface Modification with Benzocaine Hydrochloride
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2024-09-16 , DOI: 10.1021/acsami.4c09850
Zukang Chen, Shuguang Cao, Shizi Luo, Lavrenty G. Gutsev, Xiaoli Chen, Victoria V. Ozerova, Nikita A. Emelianov, Nikita A. Slesarenko, Valeria S. Bolshakova, Yupeng Zheng, Zhuoneng Bi, Sergey M. Aldoshin, Pavel A. Troshin, Bala R. Ramachandran, Gennady L. Gutsev, Hsien-Yi Hsu, Qifan Xue, Xueqing Xu

Current development of inverted p-i-n perovskite solar cells (PSCs), with nickel oxide as the hole transport layer, is progressing toward lower net costs, higher efficiencies, and superior stabilities. Unfortunately, the high density of defect-based traps on the surface of perovskite films significantly limits the photoelectric conversion efficiency and operational stability of perovskite solar cells. Finding cost-effective interface modifiers is crucial for the further commercial development of p-i-n PSCs. In the present work, we report a passivation strategy using a multifunctional molecule, benzocaine hydrochloride (BHC), which is shown to reduce defect density and enhance the photovoltaic performance and stability of the resultant p-i-n PSCs. It has been revealed that BHC strongly interacts with perovskite precursor components and triggers the evolution of the perovskite absorber film morphology and enables improved surface energy level alignment, thus promoting charge carrier transport and extraction. These properties are beneficial for improving open-circuit voltage (VOC) and fill factor (FF). Our results show that the photoelectric conversion efficiency (PCE) of p-i-n PSCs with nickel oxide as the hole transport layer increased from an initial 20.0% to 22.1% after being passivated with BHC, and these passivated devices also exhibited improved stability. DFT calculations reveal the unusual ability of the BHC passivant to improve band alignment while also preventing the accumulation of holes at the interface. In this work, the advantages of BHC passivation are demonstrated by linking theoretical calculations with optical and electrical characterizations.

中文翻译:


通过盐酸苯佐卡因表面修饰增强钙钛矿太阳能电池的性能和稳定性



目前以氧化镍作为空穴传输层的倒插销钙钛矿太阳能电池(PSC)的开发正在朝着更低的净成本、更高的效率和优异的稳定性方向发展。不幸的是,钙钛矿薄膜表面的高密度缺陷陷阱极大地限制了钙钛矿太阳能电池的光电转换效率和运行稳定性。寻找具有成本效益的界面改性剂对于pin PSC的进一步商业开发至关重要。在目前的工作中,我们报告了一种使用多功能分子盐酸苯佐卡因(BHC)的钝化策略,该策略被证明可以降低缺陷密度并增强所得pin PSC的光伏性能和稳定性。研究表明,BHC 与钙钛矿前驱体成分强烈相互作用,引发钙钛矿吸收膜形态的演变,改善表面能级排列,从而促进电荷载流子传输和提取。这些特性有利于提高开路电压( VOC )和填充因子(FF)。我们的结果表明,用氧化镍作为空穴传输层的pin PSC在用BHC钝化后,其光电转换效率(PCE)从最初的20.0%增加到22.1%,并且这些钝化器件也表现出更高的稳定性。 DFT 计算揭示了 BHC 钝化剂具有改善能带排列同时防止界面处空穴积累的非凡能力。在这项工作中,通过将理论计算与光学和电学特性联系起来,证明了 BHC 钝化的优点。
更新日期:2024-09-16
down
wechat
bug