当前位置:
X-MOL 学术
›
J. Alloys Compd.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Facile electrochemical conversion strategy for fabricating cobalt-based double metal sulfide nanosheets with high capacity and low electrochemical impedance
Journal of Alloys and Compounds ( IF 5.8 ) Pub Date : 2024-09-11 , DOI: 10.1016/j.jallcom.2024.176401 Dandan Han , Ping Wang , Yupeng Dang , Feng Zhu , Dongxu Wang , Zexiang Shen , Yen Wei
Journal of Alloys and Compounds ( IF 5.8 ) Pub Date : 2024-09-11 , DOI: 10.1016/j.jallcom.2024.176401 Dandan Han , Ping Wang , Yupeng Dang , Feng Zhu , Dongxu Wang , Zexiang Shen , Yen Wei
The transformation of metal-organic frameworks (MOFs) into customizable metal compounds with tailored pore structures is considered an effective approach for enhancing electrical conductivity as electrode materials. However, conventional MOF conversion methods often involve intricate high-temperature reactions, posing challenges in precisely controlling the composition, pore structure, and active sites of MOF-derived energy storage materials. Here, we propose a novel electrochemical conversion method for MOFs to be converted into cobalt-based bimetallic sulfides, thereby improving the low conductivity of MOFs and inheriting a porous skeleton for high-energy water-based charge storage. The extent of MOF transformation was assessed using X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy at varying Ar+ etching depths. Consequently, a zinc-cobalt sulfide (ZnCoS/NF) on highly porous nickel foam can be engineered for water-phase supercapacitor energy storage. Furthermore, the electrode exhibits a specific capacity of 566.5 mAh·g−1 at 1 A·g−1 and demonstrates excellent operational stability under large current fluctuations. Additionally, hybrid supercapacitors coupled with ZnCoS//AC can deliver a maximum energy density of 56.9 Wh·g−1 and a power density of 232.4 W·kg−1 .
中文翻译:
用于制造高容量和低电化学阻抗的钴基双金属硫化物纳米片的简便电化学转换策略
将金属有机框架(MOF)转化为具有定制孔结构的可定制金属化合物被认为是增强电极材料导电性的有效方法。然而,传统的MOF转化方法通常涉及复杂的高温反应,这给精确控制MOF衍生储能材料的组成、孔结构和活性位点带来了挑战。在这里,我们提出了一种新颖的电化学转化方法,将MOF转化为钴基双金属硫化物,从而改善MOF的低电导率并继承用于高能水基电荷存储的多孔骨架。使用 X 射线光电子能谱 (XPS) 和拉曼光谱在不同的 Ar+ 蚀刻深度下评估 MOF 转化的程度。因此,高孔隙泡沫镍上的锌钴硫化物(ZnCoS/NF)可以设计用于水相超级电容器储能。此外,该电极在1 A·g-1时表现出566.5 mAh·g-1的比容量,并且在大电流波动下表现出优异的操作稳定性。此外,与ZnCoS//AC结合的混合超级电容器可提供56.9 Wh·g−1的最大能量密度和232.4 W·kg−1的功率密度。
更新日期:2024-09-11
中文翻译:
用于制造高容量和低电化学阻抗的钴基双金属硫化物纳米片的简便电化学转换策略
将金属有机框架(MOF)转化为具有定制孔结构的可定制金属化合物被认为是增强电极材料导电性的有效方法。然而,传统的MOF转化方法通常涉及复杂的高温反应,这给精确控制MOF衍生储能材料的组成、孔结构和活性位点带来了挑战。在这里,我们提出了一种新颖的电化学转化方法,将MOF转化为钴基双金属硫化物,从而改善MOF的低电导率并继承用于高能水基电荷存储的多孔骨架。使用 X 射线光电子能谱 (XPS) 和拉曼光谱在不同的 Ar+ 蚀刻深度下评估 MOF 转化的程度。因此,高孔隙泡沫镍上的锌钴硫化物(ZnCoS/NF)可以设计用于水相超级电容器储能。此外,该电极在1 A·g-1时表现出566.5 mAh·g-1的比容量,并且在大电流波动下表现出优异的操作稳定性。此外,与ZnCoS//AC结合的混合超级电容器可提供56.9 Wh·g−1的最大能量密度和232.4 W·kg−1的功率密度。