当前位置:
X-MOL 学术
›
Inf. Manag.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Investigating employees’ occupational risks and benefits resulting from artificial intelligence: An empirical analysis
Information & Management ( IF 8.2 ) Pub Date : 2024-09-04 , DOI: 10.1016/j.im.2024.104036 Qi Wang , Xuanqi Liu , Ke-Wei Huang
Information & Management ( IF 8.2 ) Pub Date : 2024-09-04 , DOI: 10.1016/j.im.2024.104036 Qi Wang , Xuanqi Liu , Ke-Wei Huang
With rapid advances in artificial intelligence (AI), more employees are benefiting from or being replaced by AI. Nevertheless, we know little about the extent to which AI affects employees’ occupations positively. This study improves the methodologies for quantifying employees’ occupational AI benefits and risks. We propose three mechanisms by which AI may benefit employees’ careers: productivity-enhanced AI jobs, intelligence-augmented AI jobs, and AI-enabling jobs. We also conduct employee-level analyses regarding how employees’ skills, educational backgrounds, and demographics may correlate with occupational risk and AI benefits. Our results suggest that these key factors have distinct effects on different AI benefits.
中文翻译:
人工智能带来的员工职业风险与收益调查:实证分析
随着人工智能(AI)的快速发展,越来越多的员工受益于人工智能或被人工智能取代。然而,我们对人工智能对员工职业的积极影响程度知之甚少。这项研究改进了量化员工职业人工智能收益和风险的方法。我们提出了人工智能有利于员工职业生涯的三种机制:生产力增强型人工智能工作、智能增强型人工智能工作和人工智能赋能工作。我们还进行员工层面的分析,了解员工的技能、教育背景和人口统计数据如何与职业风险和人工智能收益相关。我们的结果表明,这些关键因素对不同的人工智能优势有不同的影响。
更新日期:2024-09-04
中文翻译:
人工智能带来的员工职业风险与收益调查:实证分析
随着人工智能(AI)的快速发展,越来越多的员工受益于人工智能或被人工智能取代。然而,我们对人工智能对员工职业的积极影响程度知之甚少。这项研究改进了量化员工职业人工智能收益和风险的方法。我们提出了人工智能有利于员工职业生涯的三种机制:生产力增强型人工智能工作、智能增强型人工智能工作和人工智能赋能工作。我们还进行员工层面的分析,了解员工的技能、教育背景和人口统计数据如何与职业风险和人工智能收益相关。我们的结果表明,这些关键因素对不同的人工智能优势有不同的影响。