当前位置:
X-MOL 学术
›
J. Mech. Phys. Solids
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A regularized variational mechanics theory for modeling the evolution of brittle crack networks in composite materials with sharp interfaces
Journal of the Mechanics and Physics of Solids ( IF 5.0 ) Pub Date : 2024-08-16 , DOI: 10.1016/j.jmps.2024.105772 Kaushik Vijaykumar , Benjamin E. Grossman-Ponemon , Yang Wan , Pooya Yousefi , Christopher J. Larsen , Haneesh Kesari
Journal of the Mechanics and Physics of Solids ( IF 5.0 ) Pub Date : 2024-08-16 , DOI: 10.1016/j.jmps.2024.105772 Kaushik Vijaykumar , Benjamin E. Grossman-Ponemon , Yang Wan , Pooya Yousefi , Christopher J. Larsen , Haneesh Kesari
In the design of structural materials, there is traditionally a tradeoff between achieving high strength and achieving high toughness. Nature offers creative solutions to this problem in the form of structural biomaterials (SBs), intelligent arrangements of mineral and organic phases which possess greater strength and toughness than the constituents. The micro-architecture of SBs like nacre and sea sponge spicules are characterized by weak organic interfaces between brittle mineral phases. To better understand the toughening mechanisms in SBs requires simulation techniques which can resolve arbitrary interface and bulk fracture patterns.
中文翻译:
一种正则化变分力学理论,用于模拟具有尖锐界面的复合材料中脆性裂纹网络的演变
在结构材料的设计中,传统上需要在实现高强度和高韧性之间进行权衡。大自然以结构生物材料 (SB) 的形式为这个问题提供了创造性的解决方案,结构生物材料 (SB) 是矿物相和有机相的智能排列,具有比成分更大的强度和韧性。SBs(如珍珠层和海绵针状体)的微结构的特点是脆性矿物相之间具有较弱的有机界面。为了更好地了解 SB 中的增韧机制,需要能够解决任意界面和体断裂模式的仿真技术。
更新日期:2024-08-16
中文翻译:
一种正则化变分力学理论,用于模拟具有尖锐界面的复合材料中脆性裂纹网络的演变
在结构材料的设计中,传统上需要在实现高强度和高韧性之间进行权衡。大自然以结构生物材料 (SB) 的形式为这个问题提供了创造性的解决方案,结构生物材料 (SB) 是矿物相和有机相的智能排列,具有比成分更大的强度和韧性。SBs(如珍珠层和海绵针状体)的微结构的特点是脆性矿物相之间具有较弱的有机界面。为了更好地了解 SB 中的增韧机制,需要能够解决任意界面和体断裂模式的仿真技术。