当前位置:
X-MOL 学术
›
Finite Elem. Anal. Des.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
On the Gauss–Legendre quadrature rule of deep energy method for one-dimensional problems in solid mechanics
Finite Elements in Analysis and Design ( IF 3.5 ) Pub Date : 2024-09-11 , DOI: 10.1016/j.finel.2024.104248 Thang Le-Duc , Tram Ngoc Vo , H. Nguyen-Xuan , Jaehong Lee
Finite Elements in Analysis and Design ( IF 3.5 ) Pub Date : 2024-09-11 , DOI: 10.1016/j.finel.2024.104248 Thang Le-Duc , Tram Ngoc Vo , H. Nguyen-Xuan , Jaehong Lee
Deep energy method (DEM) has shown its successes to solve several problems in solid mechanics recently. It is known that determining proper integration scheme to precisely calculate total potential energy (TPE) value is crucial to achieve high-quality training performance of DEM but it has not been discovered satisfactorily in previous related works. To shed light on this matter, this study focuses on investigating the application of Gauss–Legendre (GL) quadrature rule in training DEM to solve one-dimensional (1D) solid mechanics problems. The technical idea of this work is (1) to design a theoretical polynomial regression (PR) model via Taylor series expansion that could well-approximate multi-layer perceptron (MLP) output and its derivatives for fully capturing the representation of DEM solution, and then (2) to extract the polynomial order of the TPE loss function via the devised PR to calculate the necessary number of GL points for training DEM. To do so, mathematical analyses are firstly developed to find out the representability of DEM for geometrically nonlinear beam bending problem as a case study and the convergence of the alternative PR to the MLP with tanh activation function, providing theoretical foundations for utilizing the PR to take the place of DEM network. Subsequently, minimum number of GL points are analytically extracted and a technical framework for estimating the maximin required GL points is devised to accurately compute the TPE loss function for ensuring DEM training convergence. Several 1D linear and nonlinear beam bending examples using both Euler–Bernoulli (EB) and Timoshenko theories with various types of boundary conditions (BCs) are selected to examine the proposed method in practice. The numerical results validate the preciseness of the developed theory and the empirical effectiveness of the devised framework.
中文翻译:
关于固体力学中一维问题的深能方法的高斯-勒让德求积法
近年来,深能法 (DEM) 在解决固体力学中的几个问题方面取得了成功。众所周知,确定合适的积分方案以精确计算总势能 (TPE) 值对于实现 DEM 的高质量训练性能至关重要,但在以往的相关工作中尚未得到令人满意的发现。为了阐明这个问题,本研究侧重于研究高斯-勒让德 (GL) 求积规则在训练 DEM 以解决一维 (1D) 固体力学问题中的应用。这项工作的技术思想是 (1) 通过泰勒级数展开设计一个理论多项式回归 (PR) 模型,该模型可以很好地近似多层感知器 (MLP) 输出及其导数,以完全捕获 DEM 解决方案的表示,然后 (2) 通过设计的 PR 提取 TPE 损失函数的多项式阶数,以计算训练 DEM 所需的 GL 点数。为此,首先进行了数学分析,以找出 DEM 对几何非线性梁弯曲问题的可表示性作为案例研究,以及具有 tanh 激活函数的 MLP 的替代 PR 的收敛性,为利用 PR 代替 DEM 网络提供了理论基础。随后,分析提取最小数量的 GL 点,并设计一个估计最大所需 GL 点的技术框架,以准确计算 TPE 损失函数,以确保 DEM 训练收敛。选择了几个使用欧拉-伯努利 (EB) 和 Timoshenko 理论的 1D 线性和非线性光束弯曲示例以及各种类型的边界条件 (BC) 来检验所提出的方法在实践中的应用。 数值结果验证了所开发理论的精确性和所设计框架的实证有效性。
更新日期:2024-09-11
中文翻译:
关于固体力学中一维问题的深能方法的高斯-勒让德求积法
近年来,深能法 (DEM) 在解决固体力学中的几个问题方面取得了成功。众所周知,确定合适的积分方案以精确计算总势能 (TPE) 值对于实现 DEM 的高质量训练性能至关重要,但在以往的相关工作中尚未得到令人满意的发现。为了阐明这个问题,本研究侧重于研究高斯-勒让德 (GL) 求积规则在训练 DEM 以解决一维 (1D) 固体力学问题中的应用。这项工作的技术思想是 (1) 通过泰勒级数展开设计一个理论多项式回归 (PR) 模型,该模型可以很好地近似多层感知器 (MLP) 输出及其导数,以完全捕获 DEM 解决方案的表示,然后 (2) 通过设计的 PR 提取 TPE 损失函数的多项式阶数,以计算训练 DEM 所需的 GL 点数。为此,首先进行了数学分析,以找出 DEM 对几何非线性梁弯曲问题的可表示性作为案例研究,以及具有 tanh 激活函数的 MLP 的替代 PR 的收敛性,为利用 PR 代替 DEM 网络提供了理论基础。随后,分析提取最小数量的 GL 点,并设计一个估计最大所需 GL 点的技术框架,以准确计算 TPE 损失函数,以确保 DEM 训练收敛。选择了几个使用欧拉-伯努利 (EB) 和 Timoshenko 理论的 1D 线性和非线性光束弯曲示例以及各种类型的边界条件 (BC) 来检验所提出的方法在实践中的应用。 数值结果验证了所开发理论的精确性和所设计框架的实证有效性。