当前位置:
X-MOL 学术
›
Acta Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Quantitative model for grain boundary effects on strength-electrical conductivity relation
Acta Materialia ( IF 8.3 ) Pub Date : 2024-09-13 , DOI: 10.1016/j.actamat.2024.120390 Jiapeng Hou , Xiaotao Li , Shuo Wang , Xueyuan Fan , Chenghui Li , Qiang Wang , Zhenjun Zhang , Zhefeng Zhang
Acta Materialia ( IF 8.3 ) Pub Date : 2024-09-13 , DOI: 10.1016/j.actamat.2024.120390 Jiapeng Hou , Xiaotao Li , Shuo Wang , Xueyuan Fan , Chenghui Li , Qiang Wang , Zhenjun Zhang , Zhefeng Zhang
Fine-long shaped grains have been proved to be an efficient design approach to overcome the traditional trade-off relation between strength and electrical conductivity (EC) of metal wires. However, quantitative models linking grain shape parameters to both strength and EC remain scarce, limiting the precise optimization of material properties. In this study, grain boundaries (GBs) were classified into parallel or perpendicular ones to establish the quantitative models. Accordingly, a novel model for calculating the EC of fine-long shaped grains was proposed by first parallel-connecting the parallel GBs with the matrix, then series-connecting them with the vertical GBs. The EC calculated using this new model shows a small error band of only 0.5 %, indicating an excellent accuracy of EC calculation. Besides, a quantitative model for calculating the strength based on grain width was also developed. Consequently, the general effects of grain shape parameters including grain width, grain length, grain volume and grain aspect ratio on the strength and EC were quantitatively revealed. This work does not only advance the principle for achieving high strength and high EC through fine-long shaped grains from a qualitative concept to a quantitative framework but also offers valuable insights for the quantitative analysis of GB effects on strength and EC in other materials.
中文翻译:
晶界对强度-电导率关系影响的定量模型
细长形状的晶粒已被证明是一种有效的设计方法,可以克服金属线强度和导电性 (EC) 之间的传统权衡关系。然而,将晶粒形状参数与强度和 EC 联系起来的定量模型仍然稀缺,这限制了材料特性的精确优化。在本研究中,将晶界 (GB) 分为平行或垂直的晶界,以建立定量模型。因此,提出了一种计算细长晶粒 EC 的新模型,首先将平行 GB 与基体并联,然后将它们与垂直 GB 串联。使用这种新模型计算的 EC 显示误差带很小,仅为 0.5 %,表明 EC 计算具有出色的准确性。此外,还开发了基于晶粒宽度计算强度的定量模型。因此,定量揭示了晶粒形状参数(包括晶粒宽度、晶粒长度、晶粒体积和晶粒纵横比)对强度和 EC 的一般影响。这项工作不仅将通过细长形状的晶粒实现高强度和高 EC 的原理从定性概念推进到定量框架,而且还为定量分析 GB 对其他材料强度和 EC 的影响提供了有价值的见解。
更新日期:2024-09-13
中文翻译:
晶界对强度-电导率关系影响的定量模型
细长形状的晶粒已被证明是一种有效的设计方法,可以克服金属线强度和导电性 (EC) 之间的传统权衡关系。然而,将晶粒形状参数与强度和 EC 联系起来的定量模型仍然稀缺,这限制了材料特性的精确优化。在本研究中,将晶界 (GB) 分为平行或垂直的晶界,以建立定量模型。因此,提出了一种计算细长晶粒 EC 的新模型,首先将平行 GB 与基体并联,然后将它们与垂直 GB 串联。使用这种新模型计算的 EC 显示误差带很小,仅为 0.5 %,表明 EC 计算具有出色的准确性。此外,还开发了基于晶粒宽度计算强度的定量模型。因此,定量揭示了晶粒形状参数(包括晶粒宽度、晶粒长度、晶粒体积和晶粒纵横比)对强度和 EC 的一般影响。这项工作不仅将通过细长形状的晶粒实现高强度和高 EC 的原理从定性概念推进到定量框架,而且还为定量分析 GB 对其他材料强度和 EC 的影响提供了有价值的见解。