当前位置: X-MOL 学术Br. J. Anaesth. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effect of machine learning models on clinician prediction of postoperative complications: the Perioperative ORACLE randomised clinical trial
British Journal of Anaesthesia ( IF 9.1 ) Pub Date : 2024-09-10 , DOI: 10.1016/j.bja.2024.08.004
Bradley A. Fritz , Christopher R. King , Mohamed Abdelhack , Yixin Chen , Alex Kronzer , Joanna Abraham , Sandhya Tripathi , Arbi Ben Abdallah , Thomas Kannampallil , Thaddeus P. Budelier , Daniel Helsten , Arianna Montes de Oca , Divya Mehta , Pratyush Sontha , Omokhaye Higo , Paul Kerby , Stephen H. Gregory , Troy S. Wildes , Michael S. Avidan

Anaesthesiologists might be able to mitigate risk if they know which patients are at greatest risk for postoperative complications. This trial examined the impact of machine learning models on clinician risk assessment.

中文翻译:


机器学习模型对临床医生预测术后并发症的影响:围手术期 ORACLE 随机临床试验



如果麻醉师知道哪些患者发生术后并发症的风险最大,他们可能能够降低风险。该试验检查了机器学习模型对临床医生风险评估的影响。
更新日期:2024-09-10
down
wechat
bug