当前位置:
X-MOL 学术
›
Biomass Bioenergy
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Organic municipal solid waste derived hydrogen production through supercritical water gasification process configured with K2CO3/SiO2: Performance study
Biomass & Bioenergy ( IF 5.8 ) Pub Date : 2024-09-14 , DOI: 10.1016/j.biombioe.2024.107379 Manzoore Elahi Mohammed Soudagar , Viyat Varun Upadhyay , N Naga Bhooshanam , Ravindra Pratap Singh , Dhaval Rabadiya , R. Venkatesh , Vinayagam Mohanavel , Majed A. Alotaibi , A.H. Seikh
Biomass & Bioenergy ( IF 5.8 ) Pub Date : 2024-09-14 , DOI: 10.1016/j.biombioe.2024.107379 Manzoore Elahi Mohammed Soudagar , Viyat Varun Upadhyay , N Naga Bhooshanam , Ravindra Pratap Singh , Dhaval Rabadiya , R. Venkatesh , Vinayagam Mohanavel , Majed A. Alotaibi , A.H. Seikh
Cities worldwide face a significant public health and environmental challenge in handling municipal solid waste (MSW). This research exposed an effective utilization of MSW as the source for hydrogen production via a supercritical water gasification process under 450–650 °C at 15–45 min processing time. The impacts of gasification temperature and processing time on the functional properties of hydrogen production are studied. Its results are compared to identify the optimum processing temperature and processing time to adopt the system. Integrating 3 wt% silicon dioxide (SiO2 ) nanoparticles/3 wt% of potassium carbonate (K2 CO3 ) enhances hydrogen production by increasing the catalyst's surface area and improving the stability of active sites, leading to more efficient gasification reactions. Increasing the gasification temperature from 450 to 650 °C significantly raises the hydrogen molar fraction and gas yield with peak gasification efficiency (GE) and hydrogen efficiency (HE) values. The gasifier functioned with catalyst (3 wt% K2 CO3 /SiO2 ) under 650 °C gasification temperature and 45min gasification time influenced better output responses like improved hydrogen gas yield of 63.7 mol/kg, higher gasification efficiency of 59.8 %, better hydrogen efficiency (63.4 %) and increased carbon conversion efficiency of 63.4 and 42.5 % respectively.
中文翻译:
通过配置 K2CO3/SiO2 的超临界水气化工艺衍生有机城市固体废物制氢:性能研究
世界各地的城市在处理城市固体废物(MSW)方面面临着重大的公共卫生和环境挑战。这项研究揭示了通过超临界水气化过程在 450-650 °C 下、15-45 分钟处理时间有效利用城市固体废物作为氢气生产来源。研究了气化温度和处理时间对制氢功能特性的影响。对其结果进行比较,以确定采用该系统的最佳处理温度和处理时间。集成 3 wt% 二氧化硅 (SiO2) 纳米颗粒/3 wt% 碳酸钾 (K2CO3) 通过增加催化剂表面积和提高活性位点稳定性来提高氢气产量,从而实现更高效的气化反应。将气化温度从 450 °C 提高到 650 °C 可显着提高氢气摩尔分数和气体产率以及峰值气化效率 (GE) 和氢气效率 (HE) 值。使用催化剂(3 wt% K2CO3/SiO2)在 650 °C 气化温度和 45 分钟气化时间下运行的气化炉产生了更好的输出响应,例如氢气产量提高了 63.7 mol/kg,气化效率提高了 59.8 %,氢气效率提高了(63.4)。 %),碳转化效率分别提高 63.4% 和 42.5%。
更新日期:2024-09-14
中文翻译:
通过配置 K2CO3/SiO2 的超临界水气化工艺衍生有机城市固体废物制氢:性能研究
世界各地的城市在处理城市固体废物(MSW)方面面临着重大的公共卫生和环境挑战。这项研究揭示了通过超临界水气化过程在 450-650 °C 下、15-45 分钟处理时间有效利用城市固体废物作为氢气生产来源。研究了气化温度和处理时间对制氢功能特性的影响。对其结果进行比较,以确定采用该系统的最佳处理温度和处理时间。集成 3 wt% 二氧化硅 (SiO2) 纳米颗粒/3 wt% 碳酸钾 (K2CO3) 通过增加催化剂表面积和提高活性位点稳定性来提高氢气产量,从而实现更高效的气化反应。将气化温度从 450 °C 提高到 650 °C 可显着提高氢气摩尔分数和气体产率以及峰值气化效率 (GE) 和氢气效率 (HE) 值。使用催化剂(3 wt% K2CO3/SiO2)在 650 °C 气化温度和 45 分钟气化时间下运行的气化炉产生了更好的输出响应,例如氢气产量提高了 63.7 mol/kg,气化效率提高了 59.8 %,氢气效率提高了(63.4)。 %),碳转化效率分别提高 63.4% 和 42.5%。