当前位置:
X-MOL 学术
›
Decis. Support Syst.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Modeling the co-diffusion of competing memes in online social networks
Decision Support Systems ( IF 6.7 ) Pub Date : 2024-09-04 , DOI: 10.1016/j.dss.2024.114324 Saike He , Weiguang Zhang , Jun Luo , Peijie Zhang , Kang Zhao , Daniel Dajun Zeng
Decision Support Systems ( IF 6.7 ) Pub Date : 2024-09-04 , DOI: 10.1016/j.dss.2024.114324 Saike He , Weiguang Zhang , Jun Luo , Peijie Zhang , Kang Zhao , Daniel Dajun Zeng
Online social networks have greatly facilitated the spread of information of all sorts. Meanwhile, the abundance of information in today's world also means different pieces of information will increasingly compete for people's finite attention. When different pieces of information spread together in an online social network, why would some become trendy while others fail to emerge? Existing research either models the diffusion of each piece of information independently, or fails to consider users' inactivity in online social networks. Modeling each piece of information as a meme, this paper addresses this gap by proposing a unified model for the co-diffusion of competing memes simultaneously spreading across an online social network. We are the first to identify a ubiquitous threshold for competing meme. The threshold also functions as an effective predictor that contributes to better performance in determining the outcome of meme competitions. Outcomes from this study have important implications for online campaigns and mobilizations as well as the fight against misinformation.
中文翻译:
对在线社交网络中竞争模因的共同扩散进行建模
在线社交网络极大地促进了各种信息的传播。同时,当今世界丰富的信息也意味着不同的信息将越来越多地争夺人们有限的注意力。当不同的信息在在线社交网络中一起传播时,为什么有些会成为时尚,而另一些却没有出现?现有的研究要么独立地对每条信息的传播进行建模,要么没有考虑用户在在线社交网络中的不活跃。本文将每条信息建模为模因,通过提出一个统一的模型来解决这一差距,该模型用于同时在在线社交网络中传播的竞争模因的共同传播。我们是第一个为竞争模因确定无处不在的阈值的公司。阈值还可以作为有效的预测器,有助于在确定模因竞争的结果方面取得更好的表现。这项研究的结果对在线运动和动员以及打击错误信息具有重要意义。
更新日期:2024-09-04
中文翻译:
对在线社交网络中竞争模因的共同扩散进行建模
在线社交网络极大地促进了各种信息的传播。同时,当今世界丰富的信息也意味着不同的信息将越来越多地争夺人们有限的注意力。当不同的信息在在线社交网络中一起传播时,为什么有些会成为时尚,而另一些却没有出现?现有的研究要么独立地对每条信息的传播进行建模,要么没有考虑用户在在线社交网络中的不活跃。本文将每条信息建模为模因,通过提出一个统一的模型来解决这一差距,该模型用于同时在在线社交网络中传播的竞争模因的共同传播。我们是第一个为竞争模因确定无处不在的阈值的公司。阈值还可以作为有效的预测器,有助于在确定模因竞争的结果方面取得更好的表现。这项研究的结果对在线运动和动员以及打击错误信息具有重要意义。