当前位置:
X-MOL 学术
›
Appl. Comput. Harmon. Anal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Construction of pairwise orthogonal Parseval frames generated by filters on LCA groups
Applied and Computational Harmonic Analysis ( IF 2.6 ) Pub Date : 2024-09-07 , DOI: 10.1016/j.acha.2024.101708 Navneet Redhu , Anupam Gumber , Niraj K. Shukla
Applied and Computational Harmonic Analysis ( IF 2.6 ) Pub Date : 2024-09-07 , DOI: 10.1016/j.acha.2024.101708 Navneet Redhu , Anupam Gumber , Niraj K. Shukla
The generalized translation invariant (GTI) systems unify the discrete frame theory of generalized shift-invariant systems with its continuous version, such as wavelets, shearlets, Gabor transforms, and others. This article provides sufficient conditions to construct pairwise orthogonal Parseval GTI frames in L 2 ( G ) satisfying the local integrability condition (LIC) and having the Calderón sum one, where G is a second countable locally compact abelian group. The pairwise orthogonality plays a crucial role in multiple access communications, hiding data, synthesizing superframes and frames, etc. Further, we provide a result for constructing N numbers of GTI Parseval frames, which are pairwise orthogonal. Consequently, we obtain an explicit construction of pairwise orthogonal Parseval frames in L 2 ( R ) and L 2 ( G ) , using B-splines as a generating function. In the end, the results are particularly discussed for wavelet systems.
中文翻译:
构建由 LCA 组上的过滤器生成的成对正交 Parseval 帧
广义平移不变量 (GTI) 系统将广义移位不变量系统的离散框架理论与其连续版本(例如小波、剪切小波、Gabor 变换等)统一起来。本文提供了足够的条件,在 L2(G) 中构建成对的正交 Parseval GTI 帧,满足局部可积性条件 (LIC) 并具有 Calderón 和 1,其中 G 是第二个可数的局部紧凑阿贝尔群。成对正交性在多址通信、隐藏数据、合成超帧和帧等中起着至关重要的作用。此外,我们提供了构建 N 个 GTI Parseval 帧的结果,这些帧是成对正交的。因此,我们使用 B 样条作为生成函数,在 L2(R) 和 L2(G) 中获得了成对正交 Parseval 帧的显式构造。最后,特别讨论了小波系统的结果。
更新日期:2024-09-07
中文翻译:
构建由 LCA 组上的过滤器生成的成对正交 Parseval 帧
广义平移不变量 (GTI) 系统将广义移位不变量系统的离散框架理论与其连续版本(例如小波、剪切小波、Gabor 变换等)统一起来。本文提供了足够的条件,在 L2(G) 中构建成对的正交 Parseval GTI 帧,满足局部可积性条件 (LIC) 并具有 Calderón 和 1,其中 G 是第二个可数的局部紧凑阿贝尔群。成对正交性在多址通信、隐藏数据、合成超帧和帧等中起着至关重要的作用。此外,我们提供了构建 N 个 GTI Parseval 帧的结果,这些帧是成对正交的。因此,我们使用 B 样条作为生成函数,在 L2(R) 和 L2(G) 中获得了成对正交 Parseval 帧的显式构造。最后,特别讨论了小波系统的结果。