当前位置:
X-MOL 学术
›
ACS Energy Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Halide Perovskite Semiconductors Processing: Solvent-Based or Solvent-Free?
ACS Energy Letters ( IF 19.3 ) Pub Date : 2024-09-13 , DOI: 10.1021/acsenergylett.4c02297 Isabella Poli 1 , Annamaria Petrozza 2
ACS Energy Letters ( IF 19.3 ) Pub Date : 2024-09-13 , DOI: 10.1021/acsenergylett.4c02297 Isabella Poli 1 , Annamaria Petrozza 2
Affiliation
Metal-halide perovskites are wonder semiconductors endowed with chemical flexibility associated with a variety of optoelectronic properties, first among all the possibility of tuning their bandgap. This makes them ideal candidates for a diverse range of optoelectronic applications, including solar cells, light-emitting diodes, and photodetectors. Today the transition from laboratory-scale research to industrial-scale production is getting closer and closer; thus, it is worth putting forward some considerations to understand how this transition can be favored. One important choice regards the methods of processing materials, which fall into two main categories: solvent-based and solvent-free (Figure 1). The solvent-mediated growth of polycrystalline metal-halide perovskite thin films has been the subject of deep investigations during the past decade. Precursors are dissolved in solutions and are deposited on substrates to allow the formation of the polycrystalline thin film and the elimination of the solvents. Large amounts of data have been collected on their structural, morphological, and chemical compositions, shedding light on how these fundamental properties affect the optoelectronic quality of a thin-film semiconductor and its reliability. This is likely due to the easier access to solvent-based deposition equipment, being less expensive and requiring lower maintenance. Overall, this sets an encouraging point for industrial uptake. The main shortcomings we see at this stage are the management of solvents commonly used in perovskite synthesis, such as dimethylformamide, which are highly toxic to both human health and the environment, and the poor reproducibility from lab to lab. This is due to the process’s sensitivity to human factors, like operator experience and environmental conditions, but also to a poor control of the solvent-mediated growth process, (1) especially when the perovskite is subject to complex passivation strategies. The issue related to the toxicity has been approached by exploring the use of greener solvents in the fabrication of perovskite materials. Despite the progress, the achievement of devices with competitive performance and reproducibility is still a notable challenge. (2) The problems that concern poor reproducibility instead may be addressed by the entrance in the research lab of fully automated processes and characterizations. Figure 1. Two main categories for metal halide perovskite processing. Perovskite thin films produced by solvent-free automated processing methods, including techniques like physical vapor depositions and mechanochemical synthesis, are less mature, despite being methodologies already present in the industrial environment. Thermal evaporation involves heating a material in a vacuum chamber until it evaporates and condenses on a substrate to form a thin film. The challenge scientists have encountered is related to compositional control of the film, given the hybrid nature of the perovskite precursors. To date, solar cells with vapor-processed absorbers have achieved power conversion efficiencies higher than 24%, (3,4) yet relying on solution-processed passivation layers and charge transport layers, while fully evaporated perovskite solar cells are still limited to efficiencies of up to 20%. (5,6) The main fear from the industrial world in such methodology regards its applicability in scaled-up platforms due to the low deposition rate, the manual powder feeding system, and the point-like evaporation sources that have been mainly used in academic research. Pulsed laser deposition (PLD), which uses high-powered laser pulses to ablate material from a solid target and deposit it onto a substrate, provides superior control over film composition and tends to produce films with fewer impurities, which is essential for consistent device performance. (7) One crucial aspect of PLD is the preparation of high-quality targets. Mechanochemical synthesis may represent a promising, sustainable, and cost-effective approach to fabricate perovskite solids. (8,9) This technique involves the mechanical grinding of precursor materials to induce chemical reactions, eliminating the need for harmful solvents altogether. Laser-based perovskite film deposition with both stoichiometric and nonstoichiometric targets has been reported, highlighting that the growth control still needs some clarification. Furthermore, high investment and maintenance costs and hardware for scaling-up are still questions in terms of the opportunities for using the technique at an industrial scale. Of course, in such a context, the choice will strongly depend also on the final product targeted, whether the perovskite process must be inserted in an existing production line (e.g., Si-perovskite tandem devices) or not. To conclude, overall, the main gap we perceive is that, to date, none of the methodologies presented herein ensures a complete control of the stoichiometry of the final material and the composition of the polycrystalline thin film. Little is known about crystallite growth, the seeding mechanisms, and whether the use and control of passivating agents will be needed or even possible. This leads not only to a lack of reproducibility but also to a real difficulty when the results of stability tests, becoming more and more advanced, must be evaluated. The authors of this Editorial have recently faced this issue while trying to extrapolate general conclusions in the evaluation and selection of “good thin films chemical composition” upon the evaluation of aging tests. To bridge this common gap in halide perovskite synthesis and thin-film formation across solution, solid, and vapor phases, it is imperative to advance in situ studies to monitor the reaction progress and ensure precise prediction and control, thereby optimizing defect chemistry, thus guaranteeing major reliability of the technology. This article references 9 other publications. This article has not yet been cited by other publications.
中文翻译:
卤化物钙钛矿半导体加工:溶剂型还是无溶剂型?
金属卤化物钙钛矿是一种神奇的半导体,具有与各种光电特性相关的化学灵活性,首先是调整其带隙的可能性。这使它们成为各种光电应用的理想选择,包括太阳能电池、发光二极管和光电探测器。如今,从实验室规模的研究向工业规模生产的转变越来越近;因此,值得提出一些考虑因素,以了解如何促进这一转变。材料加工方法的一个重要选择主要分为两大类:溶剂型和无溶剂型(图 1)。在过去的十年中,溶剂介导的多晶金属卤化物钙钛矿薄膜的生长一直是深入研究的主题。将前体溶解在溶液中并沉积在基材上,以形成多晶薄膜并消除溶剂。人们收集了大量有关其结构、形态和化学成分的数据,揭示了这些基本特性如何影响薄膜半导体的光电质量及其可靠性。这可能是由于溶剂型沉积设备更容易获得、成本更低且需要更少的维护。总体而言,这为工业应用设定了一个令人鼓舞的点。现阶段我们看到的主要缺点是钙钛矿合成中常用溶剂的管理,例如二甲基甲酰胺,它们对人类健康和环境都有剧毒,而且实验室之间的重现性差。 这是由于该过程对人为因素的敏感性,例如操作员经验和环境条件,但也是由于对溶剂介导的生长过程控制不佳,(1) 特别是当钙钛矿采用复杂的钝化策略时。通过探索在钙钛矿材料的制造中使用更环保的溶剂来解决与毒性相关的问题。尽管取得了进展,但实现具有竞争性能和可重复性的设备仍然是一个显着的挑战。 (2) 与再现性差有关的问题可以通过在研究实验室引入全自动过程和表征来解决。图 1.金属卤化物钙钛矿加工的两个主要类别。尽管工业环境中已经存在这些方法,但通过无溶剂自动化加工方法(包括物理气相沉积和机械化学合成等技术)生产的钙钛矿薄膜还不太成熟。热蒸发涉及在真空室中加热材料,直到其蒸发并凝结在基板上形成薄膜。考虑到钙钛矿前体的杂化性质,科学家遇到的挑战与薄膜的成分控制有关。迄今为止,采用气相处理吸收剂的太阳能电池已经实现了高于 24% 的电力转换效率,(3,4) 但依赖于溶液处理的钝化层和电荷传输层,而完全蒸发的钙钛矿太阳能电池的效率仍然限于高达 20%。 (5,6) 工业界对这种方法的主要担忧是其在放大平台中的适用性,因为沉积率低、手动送粉系统和主要用于学术界的点状蒸发源研究。脉冲激光沉积 (PLD) 使用高功率激光脉冲从固体靶材上烧蚀材料并将其沉积到基板上,可对薄膜成分进行出色的控制,并倾向于生产杂质较少的薄膜,这对于一致的器件性能至关重要。 (7)PLD的一个重要方面是高质量靶标的制备。机械化学合成可能是一种有前景、可持续且经济高效的钙钛矿固体制造方法。 (8,9) 该技术涉及对前体材料进行机械研磨以引发化学反应,从而完全消除了对有害溶剂的需求。已经报道了具有化学计量和非化学计量靶材的基于激光的钙钛矿薄膜沉积,这突出表明生长控制仍然需要一些澄清。此外,就工业规模使用该技术的机会而言,高投资和维护成本以及用于扩大规模的硬件仍然是问题。当然,在这种情况下,选择也将在很大程度上取决于目标最终产品,钙钛矿工艺是否必须插入现有生产线(例如硅-钙钛矿串联器件)。总而言之,我们认为的主要差距是,迄今为止,本文提出的方法都无法确保完全控制最终材料的化学计量和多晶薄膜的组成。 关于微晶生长、晶种机制以及是否需要甚至可能使用和控制钝化剂,人们知之甚少。这不仅导致缺乏可重复性,而且在必须评估越来越先进的稳定性测试结果时也带来了真正的困难。该社论的作者最近遇到了这个问题,同时试图根据老化测试的评估来推断评估和选择“良好薄膜化学成分”的一般结论。为了弥补卤化物钙钛矿合成和溶液、固相和气相薄膜形成中的这一共同差距,必须推进原位研究以监测反应进程并确保精确的预测和控制,从而优化缺陷化学,从而保证该技术的主要可靠性。本文参考了其他 9 篇出版物。这篇文章尚未被其他出版物引用。
更新日期:2024-09-13
中文翻译:
卤化物钙钛矿半导体加工:溶剂型还是无溶剂型?
金属卤化物钙钛矿是一种神奇的半导体,具有与各种光电特性相关的化学灵活性,首先是调整其带隙的可能性。这使它们成为各种光电应用的理想选择,包括太阳能电池、发光二极管和光电探测器。如今,从实验室规模的研究向工业规模生产的转变越来越近;因此,值得提出一些考虑因素,以了解如何促进这一转变。材料加工方法的一个重要选择主要分为两大类:溶剂型和无溶剂型(图 1)。在过去的十年中,溶剂介导的多晶金属卤化物钙钛矿薄膜的生长一直是深入研究的主题。将前体溶解在溶液中并沉积在基材上,以形成多晶薄膜并消除溶剂。人们收集了大量有关其结构、形态和化学成分的数据,揭示了这些基本特性如何影响薄膜半导体的光电质量及其可靠性。这可能是由于溶剂型沉积设备更容易获得、成本更低且需要更少的维护。总体而言,这为工业应用设定了一个令人鼓舞的点。现阶段我们看到的主要缺点是钙钛矿合成中常用溶剂的管理,例如二甲基甲酰胺,它们对人类健康和环境都有剧毒,而且实验室之间的重现性差。 这是由于该过程对人为因素的敏感性,例如操作员经验和环境条件,但也是由于对溶剂介导的生长过程控制不佳,(1) 特别是当钙钛矿采用复杂的钝化策略时。通过探索在钙钛矿材料的制造中使用更环保的溶剂来解决与毒性相关的问题。尽管取得了进展,但实现具有竞争性能和可重复性的设备仍然是一个显着的挑战。 (2) 与再现性差有关的问题可以通过在研究实验室引入全自动过程和表征来解决。图 1.金属卤化物钙钛矿加工的两个主要类别。尽管工业环境中已经存在这些方法,但通过无溶剂自动化加工方法(包括物理气相沉积和机械化学合成等技术)生产的钙钛矿薄膜还不太成熟。热蒸发涉及在真空室中加热材料,直到其蒸发并凝结在基板上形成薄膜。考虑到钙钛矿前体的杂化性质,科学家遇到的挑战与薄膜的成分控制有关。迄今为止,采用气相处理吸收剂的太阳能电池已经实现了高于 24% 的电力转换效率,(3,4) 但依赖于溶液处理的钝化层和电荷传输层,而完全蒸发的钙钛矿太阳能电池的效率仍然限于高达 20%。 (5,6) 工业界对这种方法的主要担忧是其在放大平台中的适用性,因为沉积率低、手动送粉系统和主要用于学术界的点状蒸发源研究。脉冲激光沉积 (PLD) 使用高功率激光脉冲从固体靶材上烧蚀材料并将其沉积到基板上,可对薄膜成分进行出色的控制,并倾向于生产杂质较少的薄膜,这对于一致的器件性能至关重要。 (7)PLD的一个重要方面是高质量靶标的制备。机械化学合成可能是一种有前景、可持续且经济高效的钙钛矿固体制造方法。 (8,9) 该技术涉及对前体材料进行机械研磨以引发化学反应,从而完全消除了对有害溶剂的需求。已经报道了具有化学计量和非化学计量靶材的基于激光的钙钛矿薄膜沉积,这突出表明生长控制仍然需要一些澄清。此外,就工业规模使用该技术的机会而言,高投资和维护成本以及用于扩大规模的硬件仍然是问题。当然,在这种情况下,选择也将在很大程度上取决于目标最终产品,钙钛矿工艺是否必须插入现有生产线(例如硅-钙钛矿串联器件)。总而言之,我们认为的主要差距是,迄今为止,本文提出的方法都无法确保完全控制最终材料的化学计量和多晶薄膜的组成。 关于微晶生长、晶种机制以及是否需要甚至可能使用和控制钝化剂,人们知之甚少。这不仅导致缺乏可重复性,而且在必须评估越来越先进的稳定性测试结果时也带来了真正的困难。该社论的作者最近遇到了这个问题,同时试图根据老化测试的评估来推断评估和选择“良好薄膜化学成分”的一般结论。为了弥补卤化物钙钛矿合成和溶液、固相和气相薄膜形成中的这一共同差距,必须推进原位研究以监测反应进程并确保精确的预测和控制,从而优化缺陷化学,从而保证该技术的主要可靠性。本文参考了其他 9 篇出版物。这篇文章尚未被其他出版物引用。