当前位置:
X-MOL 学术
›
Engineering
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Bio-Inspired Screwed Conduits from the Microfluidic Rope-Coiling Effect for Microvessels and Bronchioles
Engineering ( IF 10.1 ) Pub Date : 2024-06-27 , DOI: 10.1016/j.eng.2022.09.018 Rui Liu , Jiahui Guo , Bin Kong , Yunru Yu , Yuanjin Zhao , Lingyun Sun
Engineering ( IF 10.1 ) Pub Date : 2024-06-27 , DOI: 10.1016/j.eng.2022.09.018 Rui Liu , Jiahui Guo , Bin Kong , Yunru Yu , Yuanjin Zhao , Lingyun Sun
Tubular microfibers have recently attracted extensive interest for applications in tissue engineering. However, the fabrication of tubular fibers with intricate hierarchical structures remains a major challenge. Here, we present a novel one-step microfluidic spinning method to generate bio-inspired screwed conduits (BSCs). Based on the microfluidic rope-coiling effect, a viscous hydrogel precursor is first curved into a helix stream in the channel, and then consecutively packed as a hollow structured stream and gelated into a screwed conduit (SC) via ionic and covalent crosslinking. By taking advantage of the excellent fluid-controlling ability of microfluidics, various tubes with diverse structures are fabricated via simple control over fluid velocities and multiple microfluidic device designs. The perfusability and permeability results, as well as the encapsulation and culture of human umbilical vein endothelial cells (HUVECs), human pulmonary alveolar epithelial cells (HPAs), and myogenic cells (C2C12), demonstrate that these SCs have good perfusability and permeability and the ability to induce the formation of functional biostructures. These features support the uniqueness and potential applications of these BSCs as biomimetic blood vessels and bronchiole tissues in combination with tissue microstructures, with likely application possibilities in biomedical engineering.
中文翻译:
来自微血管和细支气管的微流体绳盘绕效应的仿生螺旋导管
管状超细纤维最近在组织工程中的应用引起了广泛的兴趣。然而,制造具有复杂分层结构的管状纤维仍然是一个重大挑战。在这里,我们提出了一种新颖的一步微流体旋转方法来生成生物启发的螺纹导管 (BSC)。基于微流体绳索盘绕效应,粘性水凝胶前驱体首先在通道中弯曲成螺旋流,然后连续包装为空心结构流,并通过离子和共价交联凝胶化成螺纹导管 (SC)。通过利用微流体技术出色的流体控制能力,通过对流体速度的简单控制和多种微流体装置设计,制造出具有不同结构的各种管材。灌注性和渗透性结果,以及人脐静脉内皮细胞 (HUVECs)、人肺泡上皮细胞 (HPA) 和肌原细胞 (C2C12) 的包封和培养,表明这些 SCs 具有良好的灌注性和渗透性,并且能够诱导功能性生物结构的形成。这些特征支持这些 BSC 作为仿生血管和细支气管组织与组织微结构相结合的独特性和潜在应用,可能在生物医学工程中应用。
更新日期:2024-06-27
中文翻译:
来自微血管和细支气管的微流体绳盘绕效应的仿生螺旋导管
管状超细纤维最近在组织工程中的应用引起了广泛的兴趣。然而,制造具有复杂分层结构的管状纤维仍然是一个重大挑战。在这里,我们提出了一种新颖的一步微流体旋转方法来生成生物启发的螺纹导管 (BSC)。基于微流体绳索盘绕效应,粘性水凝胶前驱体首先在通道中弯曲成螺旋流,然后连续包装为空心结构流,并通过离子和共价交联凝胶化成螺纹导管 (SC)。通过利用微流体技术出色的流体控制能力,通过对流体速度的简单控制和多种微流体装置设计,制造出具有不同结构的各种管材。灌注性和渗透性结果,以及人脐静脉内皮细胞 (HUVECs)、人肺泡上皮细胞 (HPA) 和肌原细胞 (C2C12) 的包封和培养,表明这些 SCs 具有良好的灌注性和渗透性,并且能够诱导功能性生物结构的形成。这些特征支持这些 BSC 作为仿生血管和细支气管组织与组织微结构相结合的独特性和潜在应用,可能在生物医学工程中应用。