当前位置:
X-MOL 学术
›
Comput. Math. Appl.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Adaptive least-squares methods for convection-dominated diffusion-reaction problems
Computers & Mathematics with Applications ( IF 2.9 ) Pub Date : 2024-08-30 , DOI: 10.1016/j.camwa.2024.08.012 Zhiqiang Cai , Binghe Chen , Jing Yang
Computers & Mathematics with Applications ( IF 2.9 ) Pub Date : 2024-08-30 , DOI: 10.1016/j.camwa.2024.08.012 Zhiqiang Cai , Binghe Chen , Jing Yang
This paper studies adaptive least-squares finite element methods for convection-dominated diffusion-reaction problems. The least-squares methods are based on the first-order system of the primal and dual variables with various ways of imposing outflow boundary conditions. The coercivity of the homogeneous least-squares functionals are established, and the a priori error estimates of the least-squares methods are obtained in a norm that incorporates the streamline derivative. All methods have the same convergence rate provided that meshes in the layer regions are fine enough. To increase computational accuracy and reduce computational cost, adaptive least-squares methods are implemented and numerical results are presented for some test problems.
中文翻译:
对流主导扩散反应问题的自适应最小二乘法
本文研究了对流主导的扩散反应问题的自适应最小二乘有限元方法。最小二乘法基于原始变量和对偶变量的一阶系统,具有多种施加流出边界条件的方式。建立了齐次最小二乘泛函的矫顽力,并在包含流线导数的范数中获得了最小二乘方法的先验误差估计。只要层区域中的网格足够细,所有方法都具有相同的收敛速度。为了提高计算精度并降低计算成本,采用了自适应最小二乘法,并针对一些测试问题给出了数值结果。
更新日期:2024-08-30
中文翻译:
对流主导扩散反应问题的自适应最小二乘法
本文研究了对流主导的扩散反应问题的自适应最小二乘有限元方法。最小二乘法基于原始变量和对偶变量的一阶系统,具有多种施加流出边界条件的方式。建立了齐次最小二乘泛函的矫顽力,并在包含流线导数的范数中获得了最小二乘方法的先验误差估计。只要层区域中的网格足够细,所有方法都具有相同的收敛速度。为了提高计算精度并降低计算成本,采用了自适应最小二乘法,并针对一些测试问题给出了数值结果。