当前位置:
X-MOL 学术
›
Comput. Math. Appl.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A posteriori error estimate of a weak Galerkin finite element method for solving linear elasticity problems
Computers & Mathematics with Applications ( IF 2.9 ) Pub Date : 2024-08-14 , DOI: 10.1016/j.camwa.2024.07.027 Chunmei Liu , Yingying Xie , Liuqiang Zhong , Liping Zhou
Computers & Mathematics with Applications ( IF 2.9 ) Pub Date : 2024-08-14 , DOI: 10.1016/j.camwa.2024.07.027 Chunmei Liu , Yingying Xie , Liuqiang Zhong , Liping Zhou
In this paper, a residual-type error estimator is proposed and analyzed for a weak Galerkin finite element method for solving linear elasticity problems. The error estimator is proven to be both reliable and efficient, and be used for adaptive refinement. Numerical experiments are presented to illustrate the effectiveness of this error estimator.
中文翻译:
求解线弹性问题的弱伽辽金有限元法的后验误差估计
本文针对解决线弹性问题的弱伽辽金有限元方法提出并分析了残差型误差估计器。误差估计器被证明既可靠又高效,并且可用于自适应细化。数值实验证明了该误差估计器的有效性。
更新日期:2024-08-14
中文翻译:
求解线弹性问题的弱伽辽金有限元法的后验误差估计
本文针对解决线弹性问题的弱伽辽金有限元方法提出并分析了残差型误差估计器。误差估计器被证明既可靠又高效,并且可用于自适应细化。数值实验证明了该误差估计器的有效性。