当前位置:
X-MOL 学术
›
Case Stud. Therm. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Additive manufactured high-performance topology-optimized lattice structure: Compressive behavior and flow heat transfer characteristics
Case Studies in Thermal Engineering ( IF 6.4 ) Pub Date : 2024-09-08 , DOI: 10.1016/j.csite.2024.105097 Peipei Lu , Xiaojie Shi , Xiu Ye , Hongfeng Wang , Meiping Wu
Case Studies in Thermal Engineering ( IF 6.4 ) Pub Date : 2024-09-08 , DOI: 10.1016/j.csite.2024.105097 Peipei Lu , Xiaojie Shi , Xiu Ye , Hongfeng Wang , Meiping Wu
In this study, topological optimization techniques were employed to construct innovative TopS lattice structures, to achieve a lightweight design while simultaneously optimizing their mechanical properties and enhancing flow and heat transfer performance. Through model reconstruction and proportional scaling techniques, lightweight configurations with increased surface areas were achieved, leading to the successful fabrication of Ti-6Al-4V lattice structures via Laser Powder Bed Fusion (LPBF) technology. A comprehensive investigation combining numerical simulations and experimental testing revealed that the TopS-L lattice structure outperforms TopS-L and TopS-L in terms of compressive strength, demonstrating values of 386.00 MPa for compressive strength, 352.00 MPa for upper compressive yield strength, and 6938.00 MPa for elastic modulus. Furthermore, multilayer-filled lattice structures were found to effectively improve streamline distribution and vorticity, reducing boundary layers, which indicates a significant enhancement in fluid flow and heat transfer performance, with TopS-L exhibiting the best performance. The novelty of this work lies in its exploration of the interplay between lattice structures and their interactions with compressive deformation, energy absorption capabilities, and flow heat transfer.
中文翻译:
增材制造的高性能拓扑优化晶格结构:压缩行为和流动传热特性
在这项研究中,采用拓扑优化技术构建创新的TopS晶格结构,实现轻量化设计,同时优化其机械性能并增强流动和传热性能。通过模型重建和比例缩放技术,实现了表面积增加的轻质结构,从而通过激光粉末床熔融(LPBF)技术成功制造了 Ti-6Al-4V 晶格结构。结合数值模拟和实验测试的综合研究表明,TopS-L晶格结构在抗压强度方面优于TopS-L和TopS-L,抗压强度值为386.00 MPa,上抗压屈服强度为352.00 MPa,上抗压屈服强度为6938.00 MPa。 MPa 为弹性模量。此外,多层填充晶格结构可以有效改善流线分布和涡度,减少边界层,这表明流体流动和传热性能显着增强,其中TopS-L表现出最佳性能。这项工作的新颖性在于它探索了晶格结构之间的相互作用以及它们与压缩变形、能量吸收能力和流动传热的相互作用。
更新日期:2024-09-08
中文翻译:
增材制造的高性能拓扑优化晶格结构:压缩行为和流动传热特性
在这项研究中,采用拓扑优化技术构建创新的TopS晶格结构,实现轻量化设计,同时优化其机械性能并增强流动和传热性能。通过模型重建和比例缩放技术,实现了表面积增加的轻质结构,从而通过激光粉末床熔融(LPBF)技术成功制造了 Ti-6Al-4V 晶格结构。结合数值模拟和实验测试的综合研究表明,TopS-L晶格结构在抗压强度方面优于TopS-L和TopS-L,抗压强度值为386.00 MPa,上抗压屈服强度为352.00 MPa,上抗压屈服强度为6938.00 MPa。 MPa 为弹性模量。此外,多层填充晶格结构可以有效改善流线分布和涡度,减少边界层,这表明流体流动和传热性能显着增强,其中TopS-L表现出最佳性能。这项工作的新颖性在于它探索了晶格结构之间的相互作用以及它们与压缩变形、能量吸收能力和流动传热的相互作用。