当前位置:
X-MOL 学术
›
Case Stud. Therm. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Effects of inlet air holes on swirl flow characteristics and outlet temperature distribution in an axial swirl combustor
Case Studies in Thermal Engineering ( IF 6.4 ) Pub Date : 2024-09-14 , DOI: 10.1016/j.csite.2024.105085 Yanzhao An, Shicheng Shen, Xueqing Fu, Yuzhang Wang, Yiqiang Pei, Yan Zhang, Chuang Chen
Case Studies in Thermal Engineering ( IF 6.4 ) Pub Date : 2024-09-14 , DOI: 10.1016/j.csite.2024.105085 Yanzhao An, Shicheng Shen, Xueqing Fu, Yuzhang Wang, Yiqiang Pei, Yan Zhang, Chuang Chen
The air inlet holes on the swirl combustor are crucial for high-performance micro gas turbine (MGT), affecting internal airflow, fuel-air mixing, temperature distribution, and cooling. However, there are seldom studies that pay attention to the influence of the air inlet holes coupled with low volatility macromolecular fuels for fast and better fuel-air mixing and combustion processes in MGT. This study investigates the influence of primary and dilution hole positions on airflow, temperature, emissions, and combustion efficiency. Numerical simulations in ANSYS Fluent examine five inlet hole configurations in a two-stage axial swirl combustor. Simulation validation is conducted under three test conditions. The results showed that the cut-off effect of the primary hole affected the size of the swirl vortex core, and the backward movement of the primary hole resulted in a significant increase in the length of the recirculation zone and the coherence high-temperature zone, accelerated the droplet evaporation rate, and reduced CO and NO emissions. Backward movement of dilution hole alters flow field, affecting swirl vortex stability and reflow intensity. Case 3, with original dilution hole and backward extended primary hole, exhibits optimal outlet temperature distribution and combustion efficiency.
中文翻译:
轴向旋流燃烧室进气孔对旋流特性及出口温度分布的影响
旋流燃烧室上的进气孔对于高性能微型燃气轮机(MGT)至关重要,影响内部气流、燃油-空气混合、温度分布和冷却。然而,很少有研究关注进气孔与低挥发性高分子燃料的结合对MGT中快速、更好的油气混合和燃烧过程的影响。本研究调查了主孔和稀释孔位置对气流、温度、排放和燃烧效率的影响。 ANSYS Fluent 中的数值模拟检查了两级轴向旋流燃烧器中的五种入口孔配置。模拟验证在三种测试条件下进行。结果表明,初级孔的截止效应影响了旋流涡核的尺寸,初级孔的后移导致再循环区和相干高温区的长度显着增加,加快了液滴蒸发速度,减少了CO和NO的排放。稀释孔的向后移动改变流场,影响旋流涡流稳定性和回流强度。案例3采用原有的稀释孔和向后延伸的主孔,表现出最佳的出口温度分布和燃烧效率。
更新日期:2024-09-14
中文翻译:
轴向旋流燃烧室进气孔对旋流特性及出口温度分布的影响
旋流燃烧室上的进气孔对于高性能微型燃气轮机(MGT)至关重要,影响内部气流、燃油-空气混合、温度分布和冷却。然而,很少有研究关注进气孔与低挥发性高分子燃料的结合对MGT中快速、更好的油气混合和燃烧过程的影响。本研究调查了主孔和稀释孔位置对气流、温度、排放和燃烧效率的影响。 ANSYS Fluent 中的数值模拟检查了两级轴向旋流燃烧器中的五种入口孔配置。模拟验证在三种测试条件下进行。结果表明,初级孔的截止效应影响了旋流涡核的尺寸,初级孔的后移导致再循环区和相干高温区的长度显着增加,加快了液滴蒸发速度,减少了CO和NO的排放。稀释孔的向后移动改变流场,影响旋流涡流稳定性和回流强度。案例3采用原有的稀释孔和向后延伸的主孔,表现出最佳的出口温度分布和燃烧效率。