当前位置:
X-MOL 学术
›
Case Stud. Therm. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Thermal dynamics of nanoparticle aggregation in MHD dissipative nanofluid flow within a wavy channel: Entropy generation minimization
Case Studies in Thermal Engineering ( IF 6.4 ) Pub Date : 2024-08-30 , DOI: 10.1016/j.csite.2024.105054 Muhammad Idrees Afridi , Abid Hussanan , Muhammad Qasim , Ali J. Chamkha
Case Studies in Thermal Engineering ( IF 6.4 ) Pub Date : 2024-08-30 , DOI: 10.1016/j.csite.2024.105054 Muhammad Idrees Afridi , Abid Hussanan , Muhammad Qasim , Ali J. Chamkha
This paper examines how nanoparticle aggregation and a consistent magnetic field influence the peristaltic movement of a dissipative nanofluid, which is caused by the sinusoidal deformation of the boundary. The viscosity of TiO/HO nanofluids is accurately determined by the Krieger-Dougherty model with nanoparticle aggregation, while thermal conductivity (TC) is estimated through the Bruggeman model. The set of governing equations are modeled in a fixed frame by utilizing the conservation laws of energy, mass and momentum. Galilean transformation is utilized to transform the system of equations into a wave frame, which is then converted into a dimensionless form. The assumption of a small Reynolds number and long wavelength serve to further simplify the set of equations, which are subsequently addressed through the implementation of the differential quadrature method (DQM), a highly effective numerical technique. Quantities of interest, namely velocity, pressure gradient, temperature, trapping phenomena, heat transfer, and volumetric entropy generation are analyzed across a range of physical parameters, including the solid volume fraction , Eckert number , Hartman number , Grashof number and temperature ratio parameter . A comparative analysis is conducted between the scenario involving aggregation and the one without aggregation. It is observed that nanoparticle aggregation significantly alters these quantities.
中文翻译:
波状通道内 MHD 耗散纳米流体流中纳米颗粒聚集的热动力学:熵产生最小化
本文研究了纳米颗粒聚集和一致磁场如何影响耗散纳米流体的蠕动运动,这是由边界的正弦变形引起的。 TiO2/H2O纳米流体的粘度通过具有纳米粒子聚集的Krieger-Dougherty模型精确确定,而热导率(TC)通过Bruggeman模型估计。利用能量、质量和动量守恒定律在固定框架中对控制方程组进行建模。利用伽利略变换将方程组转换为波系,然后将其转换为无量纲形式。小雷诺数和长波长的假设有助于进一步简化方程组,随后通过微分求积法 (DQM)(一种高效的数值技术)的实施来解决这些方程组。通过一系列物理参数(包括固体体积分数、埃克特数、哈特曼数、格拉霍夫数和温度比参数)分析感兴趣的量,即速度、压力梯度、温度、俘获现象、传热和体积熵产生。对有聚合场景和无聚合场景进行对比分析。据观察,纳米颗粒聚集显着改变了这些量。
更新日期:2024-08-30
中文翻译:
波状通道内 MHD 耗散纳米流体流中纳米颗粒聚集的热动力学:熵产生最小化
本文研究了纳米颗粒聚集和一致磁场如何影响耗散纳米流体的蠕动运动,这是由边界的正弦变形引起的。 TiO2/H2O纳米流体的粘度通过具有纳米粒子聚集的Krieger-Dougherty模型精确确定,而热导率(TC)通过Bruggeman模型估计。利用能量、质量和动量守恒定律在固定框架中对控制方程组进行建模。利用伽利略变换将方程组转换为波系,然后将其转换为无量纲形式。小雷诺数和长波长的假设有助于进一步简化方程组,随后通过微分求积法 (DQM)(一种高效的数值技术)的实施来解决这些方程组。通过一系列物理参数(包括固体体积分数、埃克特数、哈特曼数、格拉霍夫数和温度比参数)分析感兴趣的量,即速度、压力梯度、温度、俘获现象、传热和体积熵产生。对有聚合场景和无聚合场景进行对比分析。据观察,纳米颗粒聚集显着改变了这些量。