当前位置:
X-MOL 学术
›
Case Stud. Therm. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Operation parameters study on the performance of PEMFC based orthogonal test method
Case Studies in Thermal Engineering ( IF 6.4 ) Pub Date : 2024-09-02 , DOI: 10.1016/j.csite.2024.105035 Ning Xie , Wu Wei , Jin Ba , Tai Yang
Case Studies in Thermal Engineering ( IF 6.4 ) Pub Date : 2024-09-02 , DOI: 10.1016/j.csite.2024.105035 Ning Xie , Wu Wei , Jin Ba , Tai Yang
By selecting five key operational parameters—inlet temperature, operating temperature, anode humidity, cathode humidity, and operating pressure—and using PEMFC power density, membrane temperature difference, and membrane water content as performance indicators, simulations were conducted using 3D CFD modeling and orthogonal experiments to identify the most significant factors influencing PEMFC performance and determine the optimal operational parameter combination. The results show that working pressure has the most significant impact on PEMFC performance. Pressure variations cause significant changes in diffusion and heat conduction within the PEMFC. When the working pressure increases from 1.0 MPa to 3.0 MPa, the power density increases by approximately 11.2 %, but the temperature difference within the membrane increases by about 30.5 %. The difference between operating temperature and inlet temperature directly leads to changes in the temperature difference within the membrane. Moreover, changes in operating temperature greatly affect the water content within the proton exchange membrane, which in turn impacts the PEMFC's power density. When the operating temperature increases from 60 °C to 100 °C, the water content within the membrane decreases by approximately 50.5 %, and the power density decreases by 60.4 %. By optimizing the combination of operating parameters using a comprehensive scoring method, the temperature difference within the membrane can be controlled at 27.78 °C while ensuring the power density is increased to 0.92 W/cm.
中文翻译:
基于正交试验法的质子交换膜燃料电池性能运行参数研究
通过选择5个关键运行参数——入口温度、运行温度、阳极湿度、阴极湿度和运行压力——并以质子交换膜燃料电池功率密度、膜温差和膜含水量作为性能指标,采用3D CFD建模和正交试验进行模拟进行实验以确定影响 PEMFC 性能的最重要因素并确定最佳运行参数组合。结果表明,工作压力对质子交换膜燃料电池性能影响最为显着。压力变化会导致 PEMFC 内的扩散和热传导发生显着变化。当工作压力从1.0 MPa增加到3.0 MPa时,功率密度增加约11.2%,但膜内温差增加约30.5%。工作温度与入口温度的差异直接导致膜内温差的变化。此外,工作温度的变化极大地影响质子交换膜内的水含量,进而影响质子交换膜燃料电池的功率密度。当工作温度从60℃升高到100℃时,膜内含水量降低约50.5%,功率密度降低60.4%。通过综合评分方法优化运行参数组合,可将膜内温差控制在27.78℃,同时保证功率密度提高至0.92W/cm。
更新日期:2024-09-02
中文翻译:
基于正交试验法的质子交换膜燃料电池性能运行参数研究
通过选择5个关键运行参数——入口温度、运行温度、阳极湿度、阴极湿度和运行压力——并以质子交换膜燃料电池功率密度、膜温差和膜含水量作为性能指标,采用3D CFD建模和正交试验进行模拟进行实验以确定影响 PEMFC 性能的最重要因素并确定最佳运行参数组合。结果表明,工作压力对质子交换膜燃料电池性能影响最为显着。压力变化会导致 PEMFC 内的扩散和热传导发生显着变化。当工作压力从1.0 MPa增加到3.0 MPa时,功率密度增加约11.2%,但膜内温差增加约30.5%。工作温度与入口温度的差异直接导致膜内温差的变化。此外,工作温度的变化极大地影响质子交换膜内的水含量,进而影响质子交换膜燃料电池的功率密度。当工作温度从60℃升高到100℃时,膜内含水量降低约50.5%,功率密度降低60.4%。通过综合评分方法优化运行参数组合,可将膜内温差控制在27.78℃,同时保证功率密度提高至0.92W/cm。