当前位置:
X-MOL 学术
›
Appl. Surf. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Rational H2O deintercalation effects on cobalt vanadium oxide hydrates for ultrafast energy storage devices
Applied Surface Science ( IF 6.3 ) Pub Date : 2024-09-14 , DOI: 10.1016/j.apsusc.2024.161221 Gyu-Jin Park , Myeong-Hun Jo , Hyo-Jin Ahn
Applied Surface Science ( IF 6.3 ) Pub Date : 2024-09-14 , DOI: 10.1016/j.apsusc.2024.161221 Gyu-Jin Park , Myeong-Hun Jo , Hyo-Jin Ahn
Pseudocapacitive materials have been employed in supercapacitors owing to their high specific capacitance. Nevertheless, high-level ultrafast capabilities are emphasized to overcome their rapid capacitance degradation under ultrafast-rate ion diffusion conditions. We demonstrated rational H2 O deintercalation effects on cobalt vanadium oxide hydrate (CVOH) with increasing temperature. As the temperature increases to 200 ℃, CVOH undergoes a partial amorphization and exists in a mixed state of hydrated and dehydrated phases. As the temperature increases to 500 ℃, CVOH recrystallizes into the CVO phase through a complete deintercalation of H2 O molecules. Such acceleration of H2 O deintercalation leaves functionalized hydroxyl groups at the vertex oxygens, promoting binding affinity with electrolyte ions. Moreover, the crack propagation is accelerated on the CVO surface, resulting in a nano-split morphology from the surface to the interior of CVO particles that enlarges the contact area between the CVO and electrolyte. As the temperature increases to 800 ℃, H2 O molecules re-intercalate and carbon bridged covalent bonds are formed between the CVO interlayers, resulting in particle coarsening. Owing to the rational H2 O deintercalation effects on CVOH, CVO subjected to temperature at 500 ℃ maintained notable specific capacitance retention even under the ultrafast ion diffusion conditions (137.9 F/g at 500 mV/s).
中文翻译:
用于超快储能装置的钴钒水合物的合理 H2O 脱嵌效应
由于赝电容材料具有高比电容,因此已被用于超级电容器。尽管如此,本文还强调了高水平的超快能力,以克服它们在超快速率离子扩散条件下的电容快速退化。我们证明了随着温度的升高,H2O 对钴氧化钒水合物 (CVOH) 的合理脱嵌效应。当温度升高到 200 °C 时,CVOH 发生部分非晶化,并以水合相和脱水相的混合状态存在。当温度升高到 500 °C 时,CVOH 通过 H2O 分子的完全脱嵌重结晶到 CVO 相。H2O 脱嵌的这种加速在顶点氧处留下官能化的羟基,促进与电解质离子的结合亲和力。此外,裂纹在 CVO 表面的扩展加速,导致从 CVO 颗粒表面到内部的纳米分裂形态,从而扩大了 CVO 和电解质之间的接触面积。当温度升高到 800 °C 时,H2O 分子重新嵌入,并在 CVO 夹层之间形成碳桥共价键,导致颗粒粗化。由于 H2O 对 CVOH 的合理脱嵌效应,即使在超快离子扩散条件下(500 mV/s 时为 137.9 F/g),CVO 在 500 °C 温度下也能保持显着的比电容保持。
更新日期:2024-09-14
中文翻译:
用于超快储能装置的钴钒水合物的合理 H2O 脱嵌效应
由于赝电容材料具有高比电容,因此已被用于超级电容器。尽管如此,本文还强调了高水平的超快能力,以克服它们在超快速率离子扩散条件下的电容快速退化。我们证明了随着温度的升高,H2O 对钴氧化钒水合物 (CVOH) 的合理脱嵌效应。当温度升高到 200 °C 时,CVOH 发生部分非晶化,并以水合相和脱水相的混合状态存在。当温度升高到 500 °C 时,CVOH 通过 H2O 分子的完全脱嵌重结晶到 CVO 相。H2O 脱嵌的这种加速在顶点氧处留下官能化的羟基,促进与电解质离子的结合亲和力。此外,裂纹在 CVO 表面的扩展加速,导致从 CVO 颗粒表面到内部的纳米分裂形态,从而扩大了 CVO 和电解质之间的接触面积。当温度升高到 800 °C 时,H2O 分子重新嵌入,并在 CVO 夹层之间形成碳桥共价键,导致颗粒粗化。由于 H2O 对 CVOH 的合理脱嵌效应,即使在超快离子扩散条件下(500 mV/s 时为 137.9 F/g),CVO 在 500 °C 温度下也能保持显着的比电容保持。