当前位置: X-MOL 学术Appl. Surf. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Coupling monoclinic Pb2(CrO4)O with Mn3O4 quantum dots as oxygen vacancies-rich S-scheme photocatalysts for visible-light-driven photocatalytic CO2 reduction with H2O
Applied Surface Science ( IF 6.3 ) Pub Date : 2024-09-12 , DOI: 10.1016/j.apsusc.2024.161204
Xiaoyan Feng , Qiong Wu , Li Li , Ping Wang , Qiang Wang , Jun Liang

Simulating natural photosynthesis to convert CO2 and H2O into fuels achieving overall reaction is a promising solution for addressing environmental problems and energy crises. Constructing an S-scheme catalyst of two or more catalytic sites with rapid electron transfer and strong redox capability may be an effective strategy for coupling photocatalytic CO2 reduction and H2O oxidation. Here, an oxygen vacancies-rich S-scheme semiconductor photocatalyst composed of monoclinic lead chromate oxide (Pb2(CrO4)O) coupled with Mn3O4 quantum dots (QDs) (Pb2(CrO4)O@Mn3O4QDs) are synthesized and tested for photoconversion of CO2 with H2O under visible light. Through the integration of Pb2(CrO4)O with Mn3O4QDs, the photocatalytic C1-evolution rate on Pb2(CrO4)O@Mn3O4QDs is radically increased by 6.0 and 8.1 times, which is much faster than that of pristine Pb2(CrO4)O and Mn3O4. The origin of the greatly raised activity is revealed by advanced characterizations, and in situ X-ray photoelectron spectroscopy (XPS) confirms the electron transport pathway in Pb2(CrO4)O@Mn3O4QDs with light illumination, unveiling the efficient spatial separation/transfer of charge carriers in oxygen vacancies-rich Pb2(CrO4)O@Mn3O4QDs S-scheme heterojunction. Consequently, powerful photoelectrons and holes accumulate in the Mn3O4 conduction band and Pb2(CrO4)O valence band, respectively, exhibiting prolonged long lifetimes and facilitating their involvement in CO2 photoreduction and H2O photooxidation through altering the interfacial charge dynamics.

中文翻译:


单斜晶系 Pb2(CrO4)O 与 Mn3O4 量子点耦合作为富氧空位 S 型光催化剂,用于可见光驱动的 H2O 光催化 CO2 还原



模拟自然光合作用将 CO2 和 H2O 转化为燃料,实现整体反应是解决环境问题和能源危机的一个有前途的解决方案。构建两个或多个具有快速电子转移和强氧化还原能力的催化位点的 S 型催化剂可能是耦合光催化 CO2 还原和 H2O 氧化的有效策略。在这里,合成了由单斜铬酸盐氧化铅 (Pb2(CrO4)O) 与 Mn3O4 量子点 (QD) (Pb2(CrO4)O@Mn3O4QDs) 组成的富氧空位 S 型半导体光催化剂,并在可见光下测试了 CO2 与 H2O 的光转化。通过将 Pb2(CrO4)O 与 Mn3O4QDs 结合,Pb2(CrO4)O@Mn3O4QDs 上的光催化析 C1 速率从根本上提高了 6.0 倍和 8.1 倍,这比原始的 Pb2(CrO4)O 和 Mn3O4 快得多。通过先进的表征揭示了活性大大升高的来源,原位 X 射线光电子能谱 (XPS) 证实了 Pb2(CrO4) 中的电子传递途径O@Mn3O4QDs在光照明下,揭示了在富含氧空位的 Pb2(CrO4)O@Mn3O4QDs S 型异质结中电荷载流子的高效空间分离/转移。因此,强大的光电子和空穴分别积累在 Mn3O4 导带和 Pb2(CrO4)O 价带中,表现出延长的长寿命,并通过改变界面电荷动力学促进它们参与 CO2 光还原和 H2O 光氧化。
更新日期:2024-09-12
down
wechat
bug