当前位置:
X-MOL 学术
›
Appl. Surf. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
2D electrodeposition assembly of Cu/Cu2O nanoarrays for low temperature H2S sensing
Applied Surface Science ( IF 6.3 ) Pub Date : 2024-09-11 , DOI: 10.1016/j.apsusc.2024.161176 Huijuan Chen , Fangrui Gao , Wenbin Ren , Lulu Du , Kaifeng Xue , Pinhua Zhang , Changmin Shi , Li Lv , Guangliang Cui
Applied Surface Science ( IF 6.3 ) Pub Date : 2024-09-11 , DOI: 10.1016/j.apsusc.2024.161176 Huijuan Chen , Fangrui Gao , Wenbin Ren , Lulu Du , Kaifeng Xue , Pinhua Zhang , Changmin Shi , Li Lv , Guangliang Cui
Ultra-sensitive hydrogen sulfide (H2 S) detection technology at low temperatures provides critical support for the application of one-time alert systems under extreme conditions, ensuring reliable monitoring of H2 S in low-temperature environments and enhancing safety and practicability. In this study, we developed a novel low-temperature H2 S sensor based on Cu/Cu2 O nanoarrays, prepared through a combination of 2D electrodeposition in situ assembly and the hydrothermal method. The heterointerface between Cu nanowires and Cu2 O nanocubes presents a high barrier, which can be modulated to zero through the formation of continuous Cux S conductive channels via the vulcanization reaction, thereby achieving excellent sensitivity and selectivity towards H2 S at low temperatures. At freezing temperatures and low H2 S concentrations (≤20 ppm), the sensors show ideal recovery and reasonable sensitivity (R=150 to 10 ppm H2 S at 0 °C). However, the response significantly increases (R=5624 at 10 ppm H2 S at 50 °C) and recovery is lost under reversed conditions. First-principles calculations have confirmed that the enhanced H2 S adsorption at the heterointerface is the primary reason for the robust response observed at 0 °C. Experimental results demonstrate that the Cu/Cu2 O nanoarrays were capable of rapid detection of H2 S at low temperatures through modulation of heterointerface barriers.
中文翻译:
用于低温 H2S 传感的 Cu/Cu2O 纳米阵列的 2D 电沉积组装
超灵敏的低温硫化氢 (H2S) 检测技术为极端条件下一次性预警系统的应用提供了关键支撑,确保低温环境下 H2S 的可靠监测,增强安全性和实用性。在这项研究中,我们开发了一种基于 Cu/Cu2O 纳米阵列的新型低温 H2S 传感器,该传感器是通过 2D 电沉积原位组装和水热法相结合制备的。Cu 纳米线和 Cu2O 纳米立方体之间的异质界面呈现出高阻挡层,可以通过硫化反应形成连续的 CuxS 导电通道将其调制为零,从而在低温下实现对 H2S 的优异灵敏度和选择性。在冷冻温度和低 H2S 浓度 (≤20 ppm) 下,传感器显示出理想的恢复率和合理的灵敏度(0 °C 时 R=150 至 10 ppm H2S)。然而,响应显著增加(在 50 °C 下 10 ppm H2S 时 R=5624),并且在相反的条件下会损失回收率。第一性原理计算已经证实,异质界面处增强的 H2S 吸附是在 0 °C 时观察到稳健响应的主要原因。 实验结果表明,Cu/Cu2O 纳米阵列能够通过调制异质界面势垒在低温下快速检测 H2S。
更新日期:2024-09-11
中文翻译:
用于低温 H2S 传感的 Cu/Cu2O 纳米阵列的 2D 电沉积组装
超灵敏的低温硫化氢 (H2S) 检测技术为极端条件下一次性预警系统的应用提供了关键支撑,确保低温环境下 H2S 的可靠监测,增强安全性和实用性。在这项研究中,我们开发了一种基于 Cu/Cu2O 纳米阵列的新型低温 H2S 传感器,该传感器是通过 2D 电沉积原位组装和水热法相结合制备的。Cu 纳米线和 Cu2O 纳米立方体之间的异质界面呈现出高阻挡层,可以通过硫化反应形成连续的 CuxS 导电通道将其调制为零,从而在低温下实现对 H2S 的优异灵敏度和选择性。在冷冻温度和低 H2S 浓度 (≤20 ppm) 下,传感器显示出理想的恢复率和合理的灵敏度(0 °C 时 R=150 至 10 ppm H2S)。然而,响应显著增加(在 50 °C 下 10 ppm H2S 时 R=5624),并且在相反的条件下会损失回收率。第一性原理计算已经证实,异质界面处增强的 H2S 吸附是在 0 °C 时观察到稳健响应的主要原因。 实验结果表明,Cu/Cu2O 纳米阵列能够通过调制异质界面势垒在低温下快速检测 H2S。