当前位置:
X-MOL 学术
›
Appl. Surf. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Magnetic bimetallic Fe and Cu-loaded N-doped biochar for the activation of peroxomonosulfate for tetracycline degradation: DFT calculations and mechanism analysis
Applied Surface Science ( IF 6.3 ) Pub Date : 2024-09-04 , DOI: 10.1016/j.apsusc.2024.161158
Jie Huang , Haoyuan Zheng , Hong Xu , Qianyuan Mo , Xi Zhang , Guishang Sheng
Applied Surface Science ( IF 6.3 ) Pub Date : 2024-09-04 , DOI: 10.1016/j.apsusc.2024.161158
Jie Huang , Haoyuan Zheng , Hong Xu , Qianyuan Mo , Xi Zhang , Guishang Sheng
The synthesis of the Fe and Cu-loaded N-doped biochar was accomplished by using pomelo peel as the biochar feedstock. The surface morphology and structure of the catalyst were analyzed via several characterization methods, such as SEM, TEM, BET, XRD, FTIR, Raman, XPS, and VSM. This study investigated the influence of various factors, including catalyst pyrolysis temperature, catalyst concentration, PMS dosage, initial pH, reaction temperature, inorganic anions, and humic acid, on the degradation of TC. The main reactive oxygen species (ROS) in the system were superoxide radicals (O2 − ) according to quenching tests and electron paramagnetic resonance (EPR) analysis. Additionally, sulfate radicals (SO4 − ), hydroxyl radicals ( OH), and nonradical single-linear state oxygen (1 O2 ) were also found to participate in the degradation of TC. In addition, electrochemical impedance spectroscopy (EIS) and linear scanning voltammetry (LSV) analyses were used to determine the presence of nonradical pathways of direct electron transfer in the system. High-performance liquid chromatography–mass spectrometry (HPLC–MS) coupled with density functional theory (DFT) was used to identify the degradation intermediates of TC and to propose its degradation pathways. An evaluation of the toxicity of the intermediate substances was conducted via the toxicity estimation software tool (TEST) and molecular docking simulation.
中文翻译:
磁性双金属 Fe 和 Cu 负载 N 掺杂生物炭用于活化过氧单硫酸盐以降解四环素:DFT 计算和机理分析
Fe 和 Cu 负载的 N 掺杂生物炭的合成是通过使用柚子皮作为生物炭原料完成的。通过 SEM、TEM、BET、XRD、FTIR、Raman、XPS 和 VSM 等多种表征方法分析了催化剂的表面形貌和结构。本研究探讨了催化剂热解温度、催化剂浓度、PMS 用量、初始 pH 值、反应温度、无机阴离子和腐殖酸等多种因素对 TC 降解的影响。根据淬灭试验和电子顺磁共振 (EPR) 分析,系统中的主要活性氧 (ROS) 是超氧自由基 (O2−)。此外,硫酸根自由基 (SO4−)、羟基自由基 (OH) 和非自由基单线性态氧 (1O2) 也参与 TC 的降解。此外,电化学阻抗谱 (EIS) 和线性扫描伏安法 (LSV) 分析用于确定系统中是否存在直接电子转移的非自由基途径。高效液相色谱-质谱 (HPLC-MS) 与密度泛函理论 (DFT) 相结合,鉴定 TC 的降解中间体并提出其降解途径。通过毒性估计软件工具 (TEST) 和分子对接模拟对中间体物质的毒性进行评估。
更新日期:2024-09-04
中文翻译:
磁性双金属 Fe 和 Cu 负载 N 掺杂生物炭用于活化过氧单硫酸盐以降解四环素:DFT 计算和机理分析
Fe 和 Cu 负载的 N 掺杂生物炭的合成是通过使用柚子皮作为生物炭原料完成的。通过 SEM、TEM、BET、XRD、FTIR、Raman、XPS 和 VSM 等多种表征方法分析了催化剂的表面形貌和结构。本研究探讨了催化剂热解温度、催化剂浓度、PMS 用量、初始 pH 值、反应温度、无机阴离子和腐殖酸等多种因素对 TC 降解的影响。根据淬灭试验和电子顺磁共振 (EPR) 分析,系统中的主要活性氧 (ROS) 是超氧自由基 (O2−)。此外,硫酸根自由基 (SO4−)、羟基自由基 (OH) 和非自由基单线性态氧 (1O2) 也参与 TC 的降解。此外,电化学阻抗谱 (EIS) 和线性扫描伏安法 (LSV) 分析用于确定系统中是否存在直接电子转移的非自由基途径。高效液相色谱-质谱 (HPLC-MS) 与密度泛函理论 (DFT) 相结合,鉴定 TC 的降解中间体并提出其降解途径。通过毒性估计软件工具 (TEST) 和分子对接模拟对中间体物质的毒性进行评估。