Applied Water Science ( IF 5.7 ) Pub Date : 2024-09-14 , DOI: 10.1007/s13201-024-02289-x Jalil Helali , Mehdi Mohammadi Ghaleni , Ameneh Mianabadi , Ebrahim Asadi Oskouei , Hossein Momenzadeh , Liza Haddadi , Masoud Saboori Noghabi
After precipitation, reference evapotranspiration (ETO) plays a crucial role in the hydrological cycle as it quantifies water loss. ETO significantly impacts the water balance and holds great importance at the basin level because of the spatial distribution of managing water resources. Large scale teleconnection indices (LSTIs) play a vital role by influencing climatic variables and can be pivotal in determining ETO and its predictive variables. This study aimed to model and forecast annual ETO in Iran’s basins by utilizing LSTIs and employing various machine learning models (MLMs) such as least squares support vector machine, generalized regression neural network, multi-linear regression (MLR), and multi-layer perceptron (MLP). Initially, climate data from 122 synoptic stations covering six and 30, main and sub basins were collected, and annual ETO values were computed using the Food and Agriculture Organization 56 (PMF 56) Penman–Monteith equation. The correlations between these values and 37 LSTIs were examined within lead times ranging from 7 to 12 months. Through a stepwise approach, the most influential predictor indices (LSTIs) were selected as input datasets for the MLMs. The findings revealed the significant influence of factors such as carbon dioxide (CO2), Atlantic multidecadal oscillation, Atlantic Meridional Mode, and East Atlantic on annual ETO. Overall, all MLMs performed well in terms of the Scatter Index during both training and testing phases across all sub-basins. Furthermore, the MLP and MLR models displayed superior performance compared to other models in the training and testing evaluations based on various assessment metrics.
中文翻译:
利用遥连指数和先进的机器学习技术增强参考蒸散量预测
降水后,参考蒸散量 (ET O ) 在水文循环中发挥着至关重要的作用,因为它可以量化水损失。由于水资源管理的空间分布,ET O显着影响水平衡,并且在流域层面具有重要意义。大规模遥相关指数 (LSTI) 通过影响气候变量发挥着至关重要的作用,并且对于确定 ET O及其预测变量至关重要。本研究旨在利用 LSTI 和各种机器学习模型 (MLM)(例如最小二乘支持向量机、广义回归神经网络、多元线性回归 (MLR) 和多层模型)对伊朗流域的年度 ET O进行建模和预测。感知器(MLP)。最初,收集了覆盖 6 个和 30 个主要流域和次流域的 122 个天气站的气候数据,并使用粮食及农业组织 56 (PMF 56) Penman-Monteith 方程计算了年度 ET O值。这些值与 37 个 LSTI 之间的相关性在 7 至 12 个月的交付周期内进行了检查。通过逐步方法,选择最有影响力的预测指数 (LSTI) 作为 MLM 的输入数据集。研究结果揭示了二氧化碳(CO 2 )、大西洋数十年振荡、大西洋经向模态和东大西洋等因素对年ET O的显着影响。总体而言,在所有子流域的训练和测试阶段,所有传销在分散指数方面都表现良好。此外,在基于各种评估指标的训练和测试评估中,MLP 和 MLR 模型比其他模型表现出优越的性能。