Light: Science & Applications ( IF 20.6 ) Pub Date : 2024-09-14 , DOI: 10.1038/s41377-024-01547-6 Simone Lamon, Haoyi Yu, Qiming Zhang, Min Gu
Energy-intensive technologies and high-precision research require energy-efficient techniques and materials. Lens-based optical microscopy technology is useful for low-energy applications in the life sciences and other fields of technology, but standard techniques cannot achieve applications at the nanoscale because of light diffraction. Far-field super-resolution techniques have broken beyond the light diffraction limit, enabling 3D applications down to the molecular scale and striving to reduce energy use. Typically targeted super-resolution techniques have achieved high resolution, but the high light intensity needed to outperform competing optical transitions in nanomaterials may result in photo-damage and high energy consumption. Great efforts have been made in the development of nanomaterials to improve the resolution and efficiency of these techniques toward low-energy super-resolution applications. Lanthanide ion-doped upconversion nanoparticles that exhibit multiple long-lived excited energy states and emit upconversion luminescence have enabled the development of targeted super-resolution techniques that need low-intensity light. The use of lanthanide ion-doped upconversion nanoparticles in these techniques for emerging low-energy super-resolution applications will have a significant impact on life sciences and other areas of technology. In this review, we describe the dynamics of lanthanide ion-doped upconversion nanoparticles for super-resolution under low-intensity light and their use in targeted super-resolution techniques. We highlight low-energy super-resolution applications of lanthanide ion-doped upconversion nanoparticles, as well as the related research directions and challenges. Our aim is to analyze targeted super-resolution techniques using lanthanide ion-doped upconversion nanoparticles, emphasizing fundamental mechanisms governing transitions in lanthanide ions to surpass the diffraction limit with low-intensity light, and exploring their implications for low-energy nanoscale applications.
中文翻译:
用于低能超分辨率应用的稀土离子掺杂上转换纳米粒子
能源密集型技术和高精度研究需要节能技术和材料。基于透镜的光学显微镜技术可用于生命科学和其他技术领域的低能量应用,但由于光衍射,标准技术无法实现纳米级的应用。远场超分辨率技术已经突破了光衍射极限,使 3D 应用能够深入到分子尺度,并努力减少能源消耗。通常有针对性的超分辨率技术已经实现了高分辨率,但超越纳米材料中竞争性光学跃迁所需的高光强度可能会导致光损伤和高能耗。人们在纳米材料的开发方面付出了巨大的努力,以提高这些技术在低能量超分辨率应用中的分辨率和效率。稀土离子掺杂的上转换纳米粒子表现出多种长寿命激发能态并发出上转换发光,使得需要低强度光的靶向超分辨率技术的发展成为可能。在这些新兴的低能量超分辨率应用技术中使用稀土离子掺杂的上转换纳米颗粒将对生命科学和其他技术领域产生重大影响。在这篇综述中,我们描述了低强度光下超分辨率的稀土离子掺杂上转换纳米颗粒的动力学及其在靶向超分辨率技术中的应用。我们重点介绍了稀土离子掺杂上转换纳米粒子的低能超分辨率应用,以及相关的研究方向和挑战。 我们的目标是分析使用稀土离子掺杂上转换纳米颗粒的靶向超分辨率技术,强调控制稀土离子跃迁以超越低强度光衍射极限的基本机制,并探索其对低能纳米级应用的影响。