当前位置: X-MOL 学术Gastrointest. Endosc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multimodal convolutional neural network–based algorithm for real-time detection and differentiation of malignant and inflammatory biliary strictures in cholangioscopy: a proof-of-concept study (with video)
Gastrointestinal Endoscopy ( IF 6.7 ) Pub Date : 2024-09-13 , DOI: 10.1016/j.gie.2024.09.001
Joceline Ziegler 1 , Philipp Dobsch 2 , Marten Rozema 1 , Ina Zuber-Jerger 2 , Kilian Weigand 3 , Stefan Reuther 1 , Martina Müller 2 , Arne Kandulski 2
Affiliation  

Deep learning algorithms gained attention for detection (computer-aided detection [CADe]) of biliary tract cancer in digital single-operator cholangioscopy (dSOC). We developed a multimodal convolutional neural network (CNN) for detection (CADe), characterization and discriminating (computer-aided diagnosis [CADx]) between malignant, inflammatory, and normal biliary tissue in raw dSOC videos. In addition, clinical metadata were included in the CNN algorithm to overcome limitations of image-only models.

中文翻译:


基于多模态卷积神经网络的算法,用于实时检测和区分胆管镜检查中恶性和炎性胆道狭窄:概念验证研究(附视频)



深度学习算法在数字单人胆管镜检查 (dSOC) 中检测(计算机辅助检测 [CADe])胆道癌而受到关注。我们开发了一个多模态卷积神经网络 (CNN),用于检测 (CADe)、表征和区分(计算机辅助诊断 [CADx])原始 dSOC 视频中的恶性、炎症性和正常胆道组织。此外,CNN 算法中还包含临床元数据,以克服仅图像模型的局限性。
更新日期:2024-09-13
down
wechat
bug