Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Double Network Gel Electrolyte with High Ionic Conductivity and Mechanical Strength for Zinc-Ion Batteries
ACS Nano ( IF 15.8 ) Pub Date : 2024-09-13 , DOI: 10.1021/acsnano.4c09879 Weikang Zeng 1 , Shaobo Zhang 2, 3 , Jiaqi Lan 4 , You Lv 1 , Guoqing Zhu 1 , Haotian Huang 1 , Wei Lv 4 , Yuan Zhu 1
ACS Nano ( IF 15.8 ) Pub Date : 2024-09-13 , DOI: 10.1021/acsnano.4c09879 Weikang Zeng 1 , Shaobo Zhang 2, 3 , Jiaqi Lan 4 , You Lv 1 , Guoqing Zhu 1 , Haotian Huang 1 , Wei Lv 4 , Yuan Zhu 1
Affiliation
Gel electrolytes hold promise for stabilizing zinc-ion batteries (ZIBs), but achieving both high ionic conductivity and strong mechanical properties remains challenging. This work presents a double network gel electrolyte based on poly(N-hydroxymethyl acrylamide) (PNMA) and sodium alginate (SA), overcoming this trade-off. The PNMA network provides mechanical strength and water retention, while the SA network facilitates rapid zinc-ion (Zn2+) diffusion through tailored solvation. This double network gel exhibits a tensile strength of up to 838 kPa, significantly higher than previous reports. The SA network provides ion channels for rapid transport of hydrated Zn2+, enhancing the ionic conductivity to a ground-breaking 33.1 mS cm–1. This value is even higher than the liquid electrolytes. The growth of Zn dendrites is also suppressed due to the mechanical constraint and rapid ion conduction. In symmetrical cells, the PNMA/SA gel demonstrates exceptional cycling stability (>2000 h). Characterizations show this is because of reduced free water amount, hindering cathode material dissolution. The full cells with sodium vanadate cathode manifest a high capacity (364.8 mA h g–1 at 0.5 A g–1) and excellent capacity retention (83% after 2500 cycles at 10 A g–1). This double network design offers a way to achieve high-performance and stable ZIBs.
中文翻译:
具有高离子电导率和机械强度的锌离子电池双网络凝胶电解质
凝胶电解质有望稳定锌离子电池(ZIB),但同时实现高离子电导率和强机械性能仍然具有挑战性。这项工作提出了一种基于聚( N-羟甲基丙烯酰胺)(PNMA)和海藻酸钠(SA)的双网络凝胶电解质,克服了这一权衡。 PNMA 网络提供机械强度和保水性,而 SA 网络通过定制的溶剂化促进锌离子 (Zn 2+ ) 的快速扩散。这种双网络凝胶的拉伸强度高达838 kPa,明显高于之前的报道。 SA网络为水合Zn 2+的快速传输提供了离子通道,将离子电导率提高到突破性的33.1 mS cm –1 。该值甚至高于液体电解质。由于机械约束和快速离子传导,锌枝晶的生长也受到抑制。在对称细胞中,PNMA/SA 凝胶表现出出色的循环稳定性 (>2000 h)。表征表明这是因为自由水量减少,阻碍了正极材料的溶解。采用钒酸钠阴极的全电池表现出高容量(0.5 A g –1下为 364.8 mA hg –1 )和出色的容量保持率(10 A g –1下 2500 次循环后为 83% )。这种双网络设计提供了一种实现高性能和稳定的ZIB的方法。
更新日期:2024-09-13
中文翻译:
具有高离子电导率和机械强度的锌离子电池双网络凝胶电解质
凝胶电解质有望稳定锌离子电池(ZIB),但同时实现高离子电导率和强机械性能仍然具有挑战性。这项工作提出了一种基于聚( N-羟甲基丙烯酰胺)(PNMA)和海藻酸钠(SA)的双网络凝胶电解质,克服了这一权衡。 PNMA 网络提供机械强度和保水性,而 SA 网络通过定制的溶剂化促进锌离子 (Zn 2+ ) 的快速扩散。这种双网络凝胶的拉伸强度高达838 kPa,明显高于之前的报道。 SA网络为水合Zn 2+的快速传输提供了离子通道,将离子电导率提高到突破性的33.1 mS cm –1 。该值甚至高于液体电解质。由于机械约束和快速离子传导,锌枝晶的生长也受到抑制。在对称细胞中,PNMA/SA 凝胶表现出出色的循环稳定性 (>2000 h)。表征表明这是因为自由水量减少,阻碍了正极材料的溶解。采用钒酸钠阴极的全电池表现出高容量(0.5 A g –1下为 364.8 mA hg –1 )和出色的容量保持率(10 A g –1下 2500 次循环后为 83% )。这种双网络设计提供了一种实现高性能和稳定的ZIB的方法。