当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Formation of Core-Shell Ir@TiO2 Nanoparticles through Hydrogen Treatment as Acidic Oxygen Evolution Reaction Catalysts
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2024-09-13 , DOI: 10.1002/adfm.202408848 Jihyeon Park 1 , Eric Liu 1 , Shayan Angizi 1 , Ahmed Abdellah 1 , Ecem Yelekli Kirici 1 , Drew Higgins 1
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2024-09-13 , DOI: 10.1002/adfm.202408848 Jihyeon Park 1 , Eric Liu 1 , Shayan Angizi 1 , Ahmed Abdellah 1 , Ecem Yelekli Kirici 1 , Drew Higgins 1
Affiliation
The transition to a sustainable energy economy requires the availability of renewably produced hydrogen through proton exchange membrane water electrolysis. The techno-economic viability of this technology requires addressing materials challenges regarding the lack of active and stable catalysts for the electrochemical oxygen evolution reaction (OER) in acidic conditions. Herein, core-shell iridium/titanium dioxide (Core-shell Ir@TiO2) catalysts for acidic OER are synthesized through a polyol method to create TiO2 nanoparticles, followed by urea reduction with Ir, and subsequent annealing in hydrogen. The formation process of the core-shell structure is observed through in situ environmental transmission electron microscopy under annealing conditions. Ir segregation occurred from an initially blended mixed metal oxide structure to a core-shell configuration at 500 °C. Core-shell Ir@TiO2 showed a three-fold higher stability number (i.e., S-number) than commercial IrOx (3.34 × 106 versus 1.02 × 106). Furthermore, an Ir-mass normalized activity of 1,880 A gIr−1 at 1.7 V versus RHE is measured for Core-shell Ir@TiO2, compared to 624 A gIr−1 for commercial IrOx. The developed synthetic route to prepare a composite structure with a TiO2 core and Ir-based shell has enabled an Ir content reduction without a compromise in activity and stability, thus offering a promising avenue for developing next-generation catalysts tailored for acidic water electrolysis.
中文翻译:
通过氢处理形成核壳 Ir@TiO2 纳米粒子作为酸性析氧反应催化剂
向可持续能源经济的过渡需要通过质子交换膜水电解提供可再生的氢气。该技术的技术经济可行性需要解决酸性条件下电化学析氧反应(OER)缺乏活性且稳定的催化剂的材料挑战。在此,通过多元醇方法合成用于酸性OER的核壳铱/二氧化钛(核壳Ir@TiO 2 )催化剂以产生TiO 2纳米粒子,然后用Ir还原尿素,并随后在氢气中退火。在退火条件下通过原位环境透射电子显微镜观察核壳结构的形成过程。在 500 °C 时,Ir 偏析从最初混合的混合金属氧化物结构发生到核壳结构。核壳Ir@TiO 2显示出比商业IrO x高三倍的稳定性数(即S数)(3.34 × 10 6与1.02 × 10 6 )。此外,对于核-壳Ir@TiO 2 ,在1.7V相对于RHE下测得的Ir质量归一化活性为1,880 A g Ir -1 ,而商业IrO x的Ir质量归一化活性为624 A g Ir -1 。所开发的制备具有TiO 2核和Ir基壳的复合结构的合成路线能够在不影响活性和稳定性的情况下降低Ir含量,从而为开发用于酸性水电解的下一代催化剂提供了有前景的途径。
更新日期:2024-09-13
中文翻译:
通过氢处理形成核壳 Ir@TiO2 纳米粒子作为酸性析氧反应催化剂
向可持续能源经济的过渡需要通过质子交换膜水电解提供可再生的氢气。该技术的技术经济可行性需要解决酸性条件下电化学析氧反应(OER)缺乏活性且稳定的催化剂的材料挑战。在此,通过多元醇方法合成用于酸性OER的核壳铱/二氧化钛(核壳Ir@TiO 2 )催化剂以产生TiO 2纳米粒子,然后用Ir还原尿素,并随后在氢气中退火。在退火条件下通过原位环境透射电子显微镜观察核壳结构的形成过程。在 500 °C 时,Ir 偏析从最初混合的混合金属氧化物结构发生到核壳结构。核壳Ir@TiO 2显示出比商业IrO x高三倍的稳定性数(即S数)(3.34 × 10 6与1.02 × 10 6 )。此外,对于核-壳Ir@TiO 2 ,在1.7V相对于RHE下测得的Ir质量归一化活性为1,880 A g Ir -1 ,而商业IrO x的Ir质量归一化活性为624 A g Ir -1 。所开发的制备具有TiO 2核和Ir基壳的复合结构的合成路线能够在不影响活性和稳定性的情况下降低Ir含量,从而为开发用于酸性水电解的下一代催化剂提供了有前景的途径。