当前位置:
X-MOL 学术
›
J. Chem. Theory Comput.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Benchmark Study of Core-Ionization Energies with the Generalized Active Space-Driven Similarity Renormalization Group
Journal of Chemical Theory and Computation ( IF 5.7 ) Pub Date : 2024-09-13 , DOI: 10.1021/acs.jctc.4c00835 Meng Huang 1 , Francesco A Evangelista 1
Journal of Chemical Theory and Computation ( IF 5.7 ) Pub Date : 2024-09-13 , DOI: 10.1021/acs.jctc.4c00835 Meng Huang 1 , Francesco A Evangelista 1
Affiliation
X-ray photoelectron spectroscopy (XPS) is a powerful experimental technique for probing the electronic structure of molecules and materials; however, interpreting XPS data requires accurate computational methods to model core-ionized states. This work proposes and benchmarks a new approach based on the generalized active space-driven similarity renormalization group (GAS-DSRG) for calculating core-ionization energies and treating correlation effects at the perturbative and nonperturbative levels. We tested the GAS-DSRG across three data sets. First, the vertical core-ionization energies of small molecules containing first-row elements are evaluated. GAS-DSRG achieves mean absolute errors below 0.3 eV, which is comparable to high-level coupled cluster methods. Next, the accuracy of GAS-DSRG is evaluated for larger organic molecules using the CORE65 data set, with the DSRG-MRPT3 level yielding a mean absolute error of only 0.34 eV for 65 core-ionization transitions. Insights are provided into the treatment of static and dynamic correlation, the importance of high-order perturbation theory, and notable differences from density functional theory in the predicted energy ordering of core-ionized states for specific molecules. Finally, vibrationally resolved XPS spectra of diatomic molecules (CO, N2, and O2) are simulated, showing excellent agreement with experimental data.
中文翻译:
广义主动空间驱动相似性重正化群的核心电离能基准研究
X射线光电子能谱(XPS)是探测分子和材料电子结构的强大实验技术;然而,解释 XPS 数据需要精确的计算方法来模拟核心电离态。这项工作提出并基准测试了一种基于广义主动空间驱动的相似性重正化群(GAS-DSRG)的新方法,用于计算核心电离能并处理微扰和非微扰水平的相关效应。我们在三个数据集上测试了 GAS-DSRG。首先,评估含有第一行元素的小分子的垂直核心电离能。 GAS-DSRG 的平均绝对误差低于 0.3 eV,与高级耦合簇方法相当。接下来,使用 CORE65 数据集评估 GAS-DSRG 对于较大有机分子的准确性,DSRG-MRPT3 水平对于 65 个核心电离跃迁产生的平均绝对误差仅为 0.34 eV。深入探讨了静态和动态相关性的处理、高阶微扰理论的重要性,以及在预测特定分子的核心电离态能量排序方面与密度泛函理论的显着差异。最后,模拟了双原子分子(CO、N 2和 O 2 )的振动分辨 XPS 光谱,结果与实验数据非常吻合。
更新日期:2024-09-13
中文翻译:
广义主动空间驱动相似性重正化群的核心电离能基准研究
X射线光电子能谱(XPS)是探测分子和材料电子结构的强大实验技术;然而,解释 XPS 数据需要精确的计算方法来模拟核心电离态。这项工作提出并基准测试了一种基于广义主动空间驱动的相似性重正化群(GAS-DSRG)的新方法,用于计算核心电离能并处理微扰和非微扰水平的相关效应。我们在三个数据集上测试了 GAS-DSRG。首先,评估含有第一行元素的小分子的垂直核心电离能。 GAS-DSRG 的平均绝对误差低于 0.3 eV,与高级耦合簇方法相当。接下来,使用 CORE65 数据集评估 GAS-DSRG 对于较大有机分子的准确性,DSRG-MRPT3 水平对于 65 个核心电离跃迁产生的平均绝对误差仅为 0.34 eV。深入探讨了静态和动态相关性的处理、高阶微扰理论的重要性,以及在预测特定分子的核心电离态能量排序方面与密度泛函理论的显着差异。最后,模拟了双原子分子(CO、N 2和 O 2 )的振动分辨 XPS 光谱,结果与实验数据非常吻合。