当前位置:
X-MOL 学术
›
J. Agric. Food Chem.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Bioupcycling Methane and CO2 for Succinate Production by an Engineered Type I Methanotrophic Bacterium
Journal of Agricultural and Food Chemistry ( IF 5.7 ) Pub Date : 2024-09-13 , DOI: 10.1021/acs.jafc.4c05097 Weiting Wang 1 , Shuqi Guo 1 , Qianzi Hou 1 , Chenyue Zhang 1 , Zixi Gao 1 , Jingwen Zhou 2 , Qiang Fei 1
Journal of Agricultural and Food Chemistry ( IF 5.7 ) Pub Date : 2024-09-13 , DOI: 10.1021/acs.jafc.4c05097 Weiting Wang 1 , Shuqi Guo 1 , Qianzi Hou 1 , Chenyue Zhang 1 , Zixi Gao 1 , Jingwen Zhou 2 , Qiang Fei 1
Affiliation
Methane, a byproduct of agricultural activities, has shown potential as a nonedible substrate for biomanufacturing. The production of succinate by a methanotrophic bacterium utilizing methane presents an innovative route for the sustainable synthesis of chemicals. In this study, Methylotuvimicrobium buryatense 5GB1S was genetically modified through the reconstruction of an artificial serine cycle to enable the bioconversion of both methane and CO2 into succinate. The 13C labeling analysis confirmed the CO2 fixing in M. buryatense 5GB1S, leading to a 46% improvement in carbon conversion efficiency and a 107% increase in succinate production compared to the wild-type strain. The transcriptome data on carbon metabolisms was assessed to guide future optimizations for strengthening the overall carbon flux from methane to succinate. Finally, the maximum succinate titer of 299.36 mg/L was achieved under oxygen-limited conditions in 3 L bioreactors, which resulted in the volumetric productivity of 199.60 mg/L/day, representing a 23-fold enhancement compared to the wild-type strain. This study offers a new strategy for upcycling greenhouse gases into succinate in a sustainable manner through methanotrophic-based biomanufacturing.
中文翻译:
生物升级回收甲烷和 CO2 用于工程化 I 型嗜甲烷菌生产琥珀酸盐
甲烷是农业活动的副产品,已显示出作为生物制造不可食用基质的潜力。利用甲烷的嗜甲烷细菌生产琥珀酸盐为化学品的可持续合成提供了一种创新途径。在这项研究中,Methylotuvimicrobium buratense 5GB1S 通过重建人工丝氨酸循环进行基因改造,使甲烷和 CO2 能够生物转化为琥珀酸盐。13C 标记分析证实了 M. buratense 5GB1S 中的 CO2 固定,导致与野生型菌株相比,碳转化效率提高了 46%,琥珀酸盐产量增加了 107%。评估了碳代谢的转录组数据,以指导未来的优化,以加强从甲烷到琥珀酸盐的整体碳通量。最后,在 3 L 生物反应器中,在限氧条件下达到 299.36 mg/L 的最大琥珀酸盐滴定度,体积生产率为 199.60 mg/L/d,与野生型菌株相比提高了 23 倍。这项研究提供了一种通过基于甲烷营养生物制造以可持续方式将温室气体升级回收为琥珀酸盐的新策略。
更新日期:2024-09-13
中文翻译:
生物升级回收甲烷和 CO2 用于工程化 I 型嗜甲烷菌生产琥珀酸盐
甲烷是农业活动的副产品,已显示出作为生物制造不可食用基质的潜力。利用甲烷的嗜甲烷细菌生产琥珀酸盐为化学品的可持续合成提供了一种创新途径。在这项研究中,Methylotuvimicrobium buratense 5GB1S 通过重建人工丝氨酸循环进行基因改造,使甲烷和 CO2 能够生物转化为琥珀酸盐。13C 标记分析证实了 M. buratense 5GB1S 中的 CO2 固定,导致与野生型菌株相比,碳转化效率提高了 46%,琥珀酸盐产量增加了 107%。评估了碳代谢的转录组数据,以指导未来的优化,以加强从甲烷到琥珀酸盐的整体碳通量。最后,在 3 L 生物反应器中,在限氧条件下达到 299.36 mg/L 的最大琥珀酸盐滴定度,体积生产率为 199.60 mg/L/d,与野生型菌株相比提高了 23 倍。这项研究提供了一种通过基于甲烷营养生物制造以可持续方式将温室气体升级回收为琥珀酸盐的新策略。