当前位置:
X-MOL 学术
›
Environ. Sci. Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Photothermal Catalytic Removal of 1,2-DCE with High HCl Selectivity over the Brønsted Acid-Enriched Sulfur-Doped MOFs
Environmental Science & Technology ( IF 10.8 ) Pub Date : 2024-09-13 , DOI: 10.1021/acs.est.4c07755 Xun Wang 1 , Zeya Li 1 , Ruyi Gao 1 , Xiaohui Yu 1 , Ying Feng 1 , Zhiwei Wang 1 , Lin Jing 1 , Zhen Wei 1 , Yuxi Liu 1 , Hongxing Dai 1 , Zhenxia Zhao 2 , Jiguang Deng 1
Environmental Science & Technology ( IF 10.8 ) Pub Date : 2024-09-13 , DOI: 10.1021/acs.est.4c07755 Xun Wang 1 , Zeya Li 1 , Ruyi Gao 1 , Xiaohui Yu 1 , Ying Feng 1 , Zhiwei Wang 1 , Lin Jing 1 , Zhen Wei 1 , Yuxi Liu 1 , Hongxing Dai 1 , Zhenxia Zhao 2 , Jiguang Deng 1
Affiliation
Chlorinated volatile organic compounds come from a wide range of sources and are highly toxic, posing a serious threat to biological health and the environment. Herein, a high-efficiency and energy-saving photothermal synergistic catalytic oxidation method was developed for the removal of 1,2-dichloroethane (1,2-DCE). Compared to traditional thermocatalysis, the 1,2-DCE conversion over Ru–U6S in photothermal synergistic catalysis at 340 °C increased by approximately 44% not only reducing energy consumption but also avoiding the instability of MOF structure caused by high reaction temperature. The excellent photothermal catalytic oxidation activity was derived from the synergistic effect of photo- and thermocatalysis. Ru–U6S demonstrated excellent 1,2-DCE adsorption capacity and stronger light utilization and could produce more reactive oxygen species (•OH and •O2–) after light illumination, which participated in the oxidation reaction, promoting the release of the active site of the catalyst. The results of H2O-TPD and NH3-DRIFTS exhibited that the use of S-containing ligands in the synthesis process increased the hydroxyl groups and Brønsted acid sites, significantly improved the selectivity of CO2 and HCl in the oxidation process, and reduced the release of chlorine-containing byproducts. This work provides a high-efficiency and energy-saving strategy for removing chlorinated volatile organic compounds and increasing the selectivity of ideal products directly with MOFs directly.
中文翻译:
光热催化去除 1,2-DCE,相对于布朗斯台德酸富硫掺杂 MOF 具有高 HCl 选择性
氯化挥发性有机化合物来源广泛,毒性很强,对生物健康和环境构成严重威胁。在此,开发了一种高效节能的光热协同催化氧化方法来去除1,2-二氯乙烷(1,2-DCE)。与传统热催化相比,340℃光热协同催化中Ru-U6S的1,2-DCE转化率提高了约44%,不仅降低了能耗,而且避免了高反应温度造成的MOF结构的不稳定。优异的光热催化氧化活性源自光催化和热催化的协同效应。 Ru–U6S表现出优异的1,2-DCE吸附能力和更强的光利用率,光照后能产生更多的活性氧( · OH和· O 2 – ),参与氧化反应,促进活性位点的释放的催化剂。 H 2 O-TPD和NH 3 -DRIFTS结果表明,在合成过程中使用含S配体增加了羟基和布朗斯台德酸位,显着提高了氧化过程中CO 2和HCl的选择性,并且减少含氯副产物的释放。这项工作为直接用MOFs去除氯化挥发性有机化合物并提高理想产品的选择性提供了一种高效节能的策略。
更新日期:2024-09-13
中文翻译:
光热催化去除 1,2-DCE,相对于布朗斯台德酸富硫掺杂 MOF 具有高 HCl 选择性
氯化挥发性有机化合物来源广泛,毒性很强,对生物健康和环境构成严重威胁。在此,开发了一种高效节能的光热协同催化氧化方法来去除1,2-二氯乙烷(1,2-DCE)。与传统热催化相比,340℃光热协同催化中Ru-U6S的1,2-DCE转化率提高了约44%,不仅降低了能耗,而且避免了高反应温度造成的MOF结构的不稳定。优异的光热催化氧化活性源自光催化和热催化的协同效应。 Ru–U6S表现出优异的1,2-DCE吸附能力和更强的光利用率,光照后能产生更多的活性氧( · OH和· O 2 – ),参与氧化反应,促进活性位点的释放的催化剂。 H 2 O-TPD和NH 3 -DRIFTS结果表明,在合成过程中使用含S配体增加了羟基和布朗斯台德酸位,显着提高了氧化过程中CO 2和HCl的选择性,并且减少含氯副产物的释放。这项工作为直接用MOFs去除氯化挥发性有机化合物并提高理想产品的选择性提供了一种高效节能的策略。