当前位置:
X-MOL 学术
›
Energy Environ. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Distinguishing bulk redox from near-surface degradation in lithium nickel oxide cathodes
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-09-13 , DOI: 10.1039/d4ee02398f Lijin An, Jack E. N. Swallow, Peixi Cong, Ruomu Zhang, Andrey D. Poletayev, Erik Björklund, Pravin N. Didwal, Michael W. Fraser, Leanne A. H. Jones, Conor M. E. Phelan, Namrata Ramesh, Grant Harris, Christoph J. Sahle, Pilar Ferrer, David C. Grinter, Peter Bencok, Shusaku Hayama, M. Saiful Islam, Robert House, Peter D. Nellist, Robert J. Green, Rebecca J. Nicholls, Robert S. Weatherup
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-09-13 , DOI: 10.1039/d4ee02398f Lijin An, Jack E. N. Swallow, Peixi Cong, Ruomu Zhang, Andrey D. Poletayev, Erik Björklund, Pravin N. Didwal, Michael W. Fraser, Leanne A. H. Jones, Conor M. E. Phelan, Namrata Ramesh, Grant Harris, Christoph J. Sahle, Pilar Ferrer, David C. Grinter, Peter Bencok, Shusaku Hayama, M. Saiful Islam, Robert House, Peter D. Nellist, Robert J. Green, Rebecca J. Nicholls, Robert S. Weatherup
Ni-rich layered oxide cathodes can deliver higher energy density batteries, but uncertainties remain over their charge compensation mechanisms and the degradation processes that limit cycle life. Trapped molecular O2 has been identified within LiNiO2 at high states of charge, as seen for Li-rich cathodes where excess capacity is associated with reversible oxygen redox. Here we show that bulk redox in LiNiO2 occurs by Ni–O rehybridization, lowering the electron density on O sites, but importantly without the involvement of molecular O2. Instead, trapped O2 is related to degradation at surfaces in contact with the electrolyte, and is accompanied by Ni reduction. O2 is removed on discharge, but excess Ni2+ persists forming a reduced surface layer, associated with impeded Li transport. This implicates the instability of delithiated LiNiO2 in contact with the electrolyte in surface degradation through O2 formation and Ni reduction, highlighting the importance of surface stabilisation strategies in suppressing LiNiO2 degradation.
中文翻译:
区分锂镍氧化物阴极中的本体氧化还原和近表面降解
富镍层状氧化物阴极可以提供更高能量密度的电池,但其电荷补偿机制和限制循环寿命的退化过程仍然存在不确定性。在高电荷态的 LiNiO2 中已鉴定出被捕获的分子 O2,如富锂阴极所见,其中过剩的容量与可逆氧氧化还原有关。在这里,我们表明 LiNiO2 中的体氧化还原是通过 Ni-O 再混合发生的,降低了 O 位点的电子密度,但重要的是没有分子 O2 的参与。相反,被捕获的 O2 与与电解质接触的表面的降解有关,并伴随着 Ni 还原。O2 在放电时被去除,但过量的 Ni2+ 持续形成减少的表层,与阻碍 Li 传输有关。这意味着脱锂化的 LiNiO2 在与电解质接触时不稳定性,通过 O2 形成和 Ni 还原进行表面降解,突出了表面稳定策略在抑制 LiNiO2 降解中的重要性。
更新日期:2024-09-13
中文翻译:
区分锂镍氧化物阴极中的本体氧化还原和近表面降解
富镍层状氧化物阴极可以提供更高能量密度的电池,但其电荷补偿机制和限制循环寿命的退化过程仍然存在不确定性。在高电荷态的 LiNiO2 中已鉴定出被捕获的分子 O2,如富锂阴极所见,其中过剩的容量与可逆氧氧化还原有关。在这里,我们表明 LiNiO2 中的体氧化还原是通过 Ni-O 再混合发生的,降低了 O 位点的电子密度,但重要的是没有分子 O2 的参与。相反,被捕获的 O2 与与电解质接触的表面的降解有关,并伴随着 Ni 还原。O2 在放电时被去除,但过量的 Ni2+ 持续形成减少的表层,与阻碍 Li 传输有关。这意味着脱锂化的 LiNiO2 在与电解质接触时不稳定性,通过 O2 形成和 Ni 还原进行表面降解,突出了表面稳定策略在抑制 LiNiO2 降解中的重要性。