当前位置: X-MOL 学术Eng. Appl. Comput. Fluid Mech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Improve carbon dioxide emission prediction in the Asia and Oceania (OECD): nature-inspired optimisation algorithms versus conventional machine learning
Engineering Applications of Computational Fluid Mechanics ( IF 5.9 ) Pub Date : 2024-08-23 , DOI: 10.1080/19942060.2024.2391988
Loke Kok Foong 1, 2 , Vojtech Blazek 3 , Lukas Prokop 3 , Stanislav Misak 3 , Farruh Atamurotov 4, 5, 6 , Nima Khalilpoor 7
Affiliation  

This paper investigates the application of three nature-inspired optimisation algorithms – SHO, MFO, and GOA – combined with four machine learning methods – Gaussian Processes, Linear Regression, M...

中文翻译:


改进亚洲和大洋洲 (OECD) 的二氧化碳排放预测:自然启发的优化算法与传统机器学习



本文研究了三种受自然启发的优化算法(SHO、MFO 和 GOA)与四种机器学习方法(高斯过程、线性回归、M...
更新日期:2024-08-23
down
wechat
bug