Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Dramatic Impact of Materials Combinations on the Chemical Organization of Core–Shell Nanocrystals: Boosting the Tm3+ Emission above 1600 nm
ACS Nano ( IF 15.8 ) Pub Date : 2024-09-12 , DOI: 10.1021/acsnano.4c07932 Fernando Arteaga Cardona 1 , Eduard Madirov 1 , Radian Popescu 2 , Di Wang 3 , Dmitry Busko 1 , Dominique Ectors 4 , Christian Kübel 3 , Yolita M Eggeler 2 , Bernardo A Arús 5, 6, 7, 8, 9 , Andriy Chmyrov 5, 6, 7, 8, 9 , Oliver T Bruns 5, 6, 7, 8, 9 , Bryce S Richards 1, 10 , Damien Hudry 1
ACS Nano ( IF 15.8 ) Pub Date : 2024-09-12 , DOI: 10.1021/acsnano.4c07932 Fernando Arteaga Cardona 1 , Eduard Madirov 1 , Radian Popescu 2 , Di Wang 3 , Dmitry Busko 1 , Dominique Ectors 4 , Christian Kübel 3 , Yolita M Eggeler 2 , Bernardo A Arús 5, 6, 7, 8, 9 , Andriy Chmyrov 5, 6, 7, 8, 9 , Oliver T Bruns 5, 6, 7, 8, 9 , Bryce S Richards 1, 10 , Damien Hudry 1
Affiliation
This article represents the first foray into investigating the consequences of various material combinations on the short-wave infrared (SWIR, 1000–2000 nm) performance of Tm-based core–shell nanocrystals (NCs) above 1600 nm. In total, six different material combinations involving two different types of SWIR-emitting core NCs (α-NaTmF4 and LiTmF4) combined with three different protecting shell materials (α-NaYF4, CaF2, and LiYF4) have been synthesized. All corresponding homo- and heterostructured NCs have been meticulously characterized by powder X-ray diffraction and electron microscopy techniques. The latter revealed that out of the six investigated combinations, only one led to the formation of a true core–shell structure with well-segregated core and shell domains. The direct correlation between the downshifting performance and the spatial localization of Tm3+ ions within the final homo- and heterostructured NCs is established. Interestingly, to achieve the best SWIR performance, the formation of an abrupt interface is not a prerequisite, while the existence of a pure (even thin) protective shell is vital. Remarkably, although all homo- and heterostructured NCs have been synthesized under the exact same experimental conditions, Tm3+ SWIR emission is either fully quenched or highly efficient depending on the type of material combination. The most efficient combination (LiTmF4/LiYF4) achieved a high photoluminescence quantum yield of 39% for SWIR emission above 1600 nm (excitation power density in the range 0.5–3 W/cm2) despite significant intermixing. From now on, highly efficient SWIR-emitting probes with an emission above 1600 nm are within reach to unlock the full potential of in vivo SWIR imaging.
中文翻译:
材料组合对核壳纳米晶体化学组织的巨大影响:将 Tm3+ 发射提高到 1600 nm 以上
本文首次尝试研究各种材料组合对 1600 nm 以上的基于 Tm 的核壳纳米晶体 (NC) 的短波红外(SWIR,1000-2000 nm)性能的影响。总共合成了六种不同的材料组合,涉及两种不同类型的短波红外发射核NC(α-NaTmF 4和LiTmF 4 )与三种不同的保护壳材料(α-NaYF 4 、CaF 2和LiYF 4 )相结合。所有相应的同质和异质结构 NC 均已通过粉末 X 射线衍射和电子显微镜技术进行了仔细表征。后者表明,在六种研究的组合中,只有一种导致形成真正的核壳结构,其中核和壳域分离良好。降档性能与最终同质和异质结构 NC 中 Tm 3+离子的空间定位之间的直接相关性已建立。有趣的是,要实现最佳的短波红外性能,突变界面的形成并不是先决条件,而纯(甚至薄)保护壳的存在至关重要。值得注意的是,尽管所有同质和异质结构 NC 都是在完全相同的实验条件下合成的,但根据材料组合的类型,Tm 3+ SWIR 发射要么完全猝灭,要么高效。尽管存在明显的混合,但最有效的组合(LiTmF 4 /LiYF 4 )在 1600 nm 以上的短波红外发射(激发功率密度在 0.5–3 W/cm 2范围内)实现了 39% 的高光致发光量子产率。 从现在开始,发射波长超过 1600 nm 的高效 SWIR 发射探针有望释放体内SWIR 成像的全部潜力。
更新日期:2024-09-12
中文翻译:
材料组合对核壳纳米晶体化学组织的巨大影响:将 Tm3+ 发射提高到 1600 nm 以上
本文首次尝试研究各种材料组合对 1600 nm 以上的基于 Tm 的核壳纳米晶体 (NC) 的短波红外(SWIR,1000-2000 nm)性能的影响。总共合成了六种不同的材料组合,涉及两种不同类型的短波红外发射核NC(α-NaTmF 4和LiTmF 4 )与三种不同的保护壳材料(α-NaYF 4 、CaF 2和LiYF 4 )相结合。所有相应的同质和异质结构 NC 均已通过粉末 X 射线衍射和电子显微镜技术进行了仔细表征。后者表明,在六种研究的组合中,只有一种导致形成真正的核壳结构,其中核和壳域分离良好。降档性能与最终同质和异质结构 NC 中 Tm 3+离子的空间定位之间的直接相关性已建立。有趣的是,要实现最佳的短波红外性能,突变界面的形成并不是先决条件,而纯(甚至薄)保护壳的存在至关重要。值得注意的是,尽管所有同质和异质结构 NC 都是在完全相同的实验条件下合成的,但根据材料组合的类型,Tm 3+ SWIR 发射要么完全猝灭,要么高效。尽管存在明显的混合,但最有效的组合(LiTmF 4 /LiYF 4 )在 1600 nm 以上的短波红外发射(激发功率密度在 0.5–3 W/cm 2范围内)实现了 39% 的高光致发光量子产率。 从现在开始,发射波长超过 1600 nm 的高效 SWIR 发射探针有望释放体内SWIR 成像的全部潜力。