当前位置:
X-MOL 学术
›
J. Agric. Food Chem.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
The Fungal Transcription Factor BcTbs1 from Botrytis cinerea Promotes Pathogenicity via Host Cellulose Degradation
Journal of Agricultural and Food Chemistry ( IF 5.7 ) Pub Date : 2024-09-11 , DOI: 10.1021/acs.jafc.4c03744 Yinshan Zhang 1 , Chengguo Jia 1 , Yue Liu 1 , Guihua Li 1 , Bin Li 1 , Wuliang Shi 1 , Yubin Zhang 1 , Jie Hou 2 , Qingming Qin 1 , Mingzhe Zhang 1 , Jianchun Qin 1
Journal of Agricultural and Food Chemistry ( IF 5.7 ) Pub Date : 2024-09-11 , DOI: 10.1021/acs.jafc.4c03744 Yinshan Zhang 1 , Chengguo Jia 1 , Yue Liu 1 , Guihua Li 1 , Bin Li 1 , Wuliang Shi 1 , Yubin Zhang 1 , Jie Hou 2 , Qingming Qin 1 , Mingzhe Zhang 1 , Jianchun Qin 1
Affiliation
Zn(II)2Cys6 proteins constitute the largest group of fungal-specific transcription factors. However, little is known about their functions in the crop killer Botrytis cinerea. In this work, a T-DNA insertion strain M13448 was identified which was inserted into the Zn(II)2Cys6 TF-encoding gene BcTBS1. Knockout of BcTBS1 did not affect mycelia growth, appressorium formation, and sclerotium germination, but impaired fungal conidiation, conidial morphogenesis, conidial germination, infection cushion development, and sclerotial formation. Accordingly, ΔBctbs1 mutants showed reduced virulence in its host plants. Further study proved that BcTBS1, BCIN_15g03870, and BCIN_12g06630 were induced by cellulose. Subsequent cellulase activity assays revealed that the loss of BcTBS1 significantly decreased cellulase activity. In addition, we verified that the BCIN_15g03870 and BCIN_12g06630 genes were positive regulated by BcTBS1 by quantitative real-time reverse-transcription-polymerase chain reaction (qRT-PCR). Taken together, these results suggested that BcTBS1 can promote pathogenicity by modulating cellulase-encoding genes that participate in host cellulose degradation.
中文翻译:
来自灰葡萄孢菌的真菌转录因子 BcTbs1 通过宿主纤维素降解促进致病性
Zn(II)2Cys6 蛋白构成了最大的真菌特异性转录因子组。然而,人们对它们在作物杀手灰霉菌中的功能知之甚少。在这项工作中,鉴定了一个 T-DNA 插入菌株 M13448,它入到 Zn(II)2Cys6 TF 编码基因 BcTBS1 中。敲除 BcTBS1 不影响菌丝体生长、贴壁形成和菌核萌发,但损害了真菌分生孢子、分生孢子形态发生、分生孢子萌发、感染垫发育和菌核形成。因此,ΔBctbs1 突变体在其寄主植物中表现出降低的毒力。进一步研究证明,BcTBS1 、 BCIN_15g03870 和 BCIN_12g06630 是由纤维素诱导的。随后的纤维素酶活性测定显示,BcTBS1 的缺失显著降低了纤维素酶活性。此外,我们通过定量实时逆转录聚合酶链反应 (qRT-PCR) 验证了 BCIN_15g03870 和 BCIN_12g06630 基因受 BcTBS1 的阳性调控。综上所述,这些结果表明 BcTBS1 可以通过调节参与宿主纤维素降解的纤维素酶编码基因来促进致病性。
更新日期:2024-09-11
中文翻译:
来自灰葡萄孢菌的真菌转录因子 BcTbs1 通过宿主纤维素降解促进致病性
Zn(II)2Cys6 蛋白构成了最大的真菌特异性转录因子组。然而,人们对它们在作物杀手灰霉菌中的功能知之甚少。在这项工作中,鉴定了一个 T-DNA 插入菌株 M13448,它入到 Zn(II)2Cys6 TF 编码基因 BcTBS1 中。敲除 BcTBS1 不影响菌丝体生长、贴壁形成和菌核萌发,但损害了真菌分生孢子、分生孢子形态发生、分生孢子萌发、感染垫发育和菌核形成。因此,ΔBctbs1 突变体在其寄主植物中表现出降低的毒力。进一步研究证明,BcTBS1 、 BCIN_15g03870 和 BCIN_12g06630 是由纤维素诱导的。随后的纤维素酶活性测定显示,BcTBS1 的缺失显著降低了纤维素酶活性。此外,我们通过定量实时逆转录聚合酶链反应 (qRT-PCR) 验证了 BCIN_15g03870 和 BCIN_12g06630 基因受 BcTBS1 的阳性调控。综上所述,这些结果表明 BcTBS1 可以通过调节参与宿主纤维素降解的纤维素酶编码基因来促进致病性。