当前位置:
X-MOL 学术
›
Environ. Sci. Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Microbial Mineralization with Lysinibacillus sphaericus for Selective Lithium Nanoparticle Extraction
Environmental Science & Technology ( IF 10.8 ) Pub Date : 2024-09-12 , DOI: 10.1021/acs.est.4c06540 Toriana N Vigil 1 , Grayson C Johnson 1 , Sarah G Jacob 1 , Leah C Spangler 2 , Bryan W Berger 1
Environmental Science & Technology ( IF 10.8 ) Pub Date : 2024-09-12 , DOI: 10.1021/acs.est.4c06540 Toriana N Vigil 1 , Grayson C Johnson 1 , Sarah G Jacob 1 , Leah C Spangler 2 , Bryan W Berger 1
Affiliation
Lithium is a critical mineral in a wide range of current technologies, and demand continues to grow with the transition to a green economy. Current lithium mining and extraction practices are often highly ecologically damaging, in part due to the large amount of water and energy they consume. Biomineralization is a natural process that transforms inorganic precursors to minerals. Microbial biomineralization has potential as an ecofriendly alternative to current lithium extraction techniques. This work demonstrates Lysinibacillus sphaericus biomineralization of lithium chloride to lithium hydroxide. Quantitative analysis of biomineralized lithium via the 2-(2-hydroxyphenyl)-benzoxazole fluorescence assay reveals significantly greater recovery with L. sphaericus than without. Furthermore, L. sphaericus biomineralization is specific to lithium over sodium. The nanoparticles produced were further characterized via Fourier transform infrared and transmission electron microscopy analysis as crystalline lithium hydroxide, which is an advanced functional material. Finally, ESI–LC/MS was used to identify several proteins involved in this microbial biomineralization process, including the S-layer protein. Through the isolation of L. sphaericus ghosts, this work shows that the S-layer protein alone plays a critical role in the biomineralization of crystalline lithium hydroxide nanoparticles. Through this study of microbial biomineralization of lithium with L. sphaericus, there is potential to develop innovative and environmentally friendly extraction techniques.
中文翻译:
利用球形赖氨酸芽孢杆菌进行微生物矿化,用于选择性锂纳米颗粒提取
锂是当前多种技术中的关键矿物,随着向绿色经济的过渡,需求不断增长。当前的锂开采和提取实践往往对生态造成严重破坏,部分原因是它们消耗大量的水和能源。生物矿化是将无机前体转化为矿物质的自然过程。微生物生物矿化具有作为当前锂提取技术的环保替代方案的潜力。这项工作证明了球形赖氨酸芽孢杆菌将氯化锂生物矿化为氢氧化锂。通过 2-(2-羟基苯基)-苯并恶唑荧光测定对生物矿化锂进行定量分析表明,使用球形乳杆菌的回收率明显高于未使用的回收率。此外,球形乳杆菌生物矿化对锂具有特异性,而不是对钠。通过傅里叶变换红外和透射电子显微镜分析,所产生的纳米颗粒被进一步表征为结晶氢氧化锂,这是一种先进的功能材料。最后,使用 ESI-LC/MS 鉴定了参与该微生物生物矿化过程的几种蛋白质,包括 S 层蛋白质。通过分离L. sphaericus幽灵,这项工作表明,S 层蛋白单独在晶体氢氧化锂纳米颗粒的生物矿化中发挥着关键作用。通过这项利用球形乳杆菌对锂进行微生物生物矿化的研究,有可能开发出创新且环保的提取技术。
更新日期:2024-09-12
中文翻译:
利用球形赖氨酸芽孢杆菌进行微生物矿化,用于选择性锂纳米颗粒提取
锂是当前多种技术中的关键矿物,随着向绿色经济的过渡,需求不断增长。当前的锂开采和提取实践往往对生态造成严重破坏,部分原因是它们消耗大量的水和能源。生物矿化是将无机前体转化为矿物质的自然过程。微生物生物矿化具有作为当前锂提取技术的环保替代方案的潜力。这项工作证明了球形赖氨酸芽孢杆菌将氯化锂生物矿化为氢氧化锂。通过 2-(2-羟基苯基)-苯并恶唑荧光测定对生物矿化锂进行定量分析表明,使用球形乳杆菌的回收率明显高于未使用的回收率。此外,球形乳杆菌生物矿化对锂具有特异性,而不是对钠。通过傅里叶变换红外和透射电子显微镜分析,所产生的纳米颗粒被进一步表征为结晶氢氧化锂,这是一种先进的功能材料。最后,使用 ESI-LC/MS 鉴定了参与该微生物生物矿化过程的几种蛋白质,包括 S 层蛋白质。通过分离L. sphaericus幽灵,这项工作表明,S 层蛋白单独在晶体氢氧化锂纳米颗粒的生物矿化中发挥着关键作用。通过这项利用球形乳杆菌对锂进行微生物生物矿化的研究,有可能开发出创新且环保的提取技术。