当前位置:
X-MOL 学术
›
Pest Manag. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Monitoring the leaf damage by the rice leafroller with deep learning and ultra-light UAV
Pest Management Science ( IF 3.8 ) Pub Date : 2024-09-12 , DOI: 10.1002/ps.8401 Lang Xia 1, 2 , Ruirui Zhang 1, 2 , Liping Chen 3, 4 , Longlong Li 3, 4 , Tongchuan Yi 3, 4 , Meixiang Chen 1, 2
Pest Management Science ( IF 3.8 ) Pub Date : 2024-09-12 , DOI: 10.1002/ps.8401 Lang Xia 1, 2 , Ruirui Zhang 1, 2 , Liping Chen 3, 4 , Longlong Li 3, 4 , Tongchuan Yi 3, 4 , Meixiang Chen 1, 2
Affiliation
Rice leafroller is a serious threat to the production of rice. Monitoring the damage caused by rice leafroller is essential for effective pest management. Owing to limitations in collecting decent quality images and high-performing identification methods to recognize the damage, studies recommending fast and accurate identification of rice leafroller damage are rare. In this study, we employed an ultra-lightweight unmanned aerial vehicle (UAV) to eliminate the influence of the downwash flow field and obtain very high-resolution images of the damaged areas of the rice leafroller. We used deep learning technology and the segmentation model, Attention U-Net, to recognize the damaged area by the rice leafroller. Further, a method is presented to count the damaged patches from the segmented area.
中文翻译:
利用深度学习和超轻型无人机监测稻卷叶机叶片损伤
稻卷叶蟾对水稻生产构成严重威胁。监测稻卷叶蟀造成的损害对于有效的害虫管理至关重要。由于收集质量良好的图像和高性能识别方法来识别损伤的局限性,建议快速准确地识别水稻卷叶蟾损伤的研究很少见。在这项研究中,我们采用了超轻型无人机 (UAV) 来消除下洗流场的影响,并获得水稻卷叶机受损区域的非常高分辨率的图像。我们使用深度学习技术和分割模型 Attention U-Net 来识别水稻卷叶机的受损区域。此外,提出了一种从分割区域计数受损斑块的方法。
更新日期:2024-09-12
中文翻译:
利用深度学习和超轻型无人机监测稻卷叶机叶片损伤
稻卷叶蟾对水稻生产构成严重威胁。监测稻卷叶蟀造成的损害对于有效的害虫管理至关重要。由于收集质量良好的图像和高性能识别方法来识别损伤的局限性,建议快速准确地识别水稻卷叶蟾损伤的研究很少见。在这项研究中,我们采用了超轻型无人机 (UAV) 来消除下洗流场的影响,并获得水稻卷叶机受损区域的非常高分辨率的图像。我们使用深度学习技术和分割模型 Attention U-Net 来识别水稻卷叶机的受损区域。此外,提出了一种从分割区域计数受损斑块的方法。