当前位置:
X-MOL 学术
›
ACS Energy Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Design of Stable Hollow Particles for Silicon Anodes
ACS Energy Letters ( IF 19.3 ) Pub Date : 2024-09-12 , DOI: 10.1021/acsenergylett.4c01873 Shaunak A. Joshi 1 , Hamdi A. Tchelepi 1 , Daniel M. Tartakovsky 1
ACS Energy Letters ( IF 19.3 ) Pub Date : 2024-09-12 , DOI: 10.1021/acsenergylett.4c01873 Shaunak A. Joshi 1 , Hamdi A. Tchelepi 1 , Daniel M. Tartakovsky 1
Affiliation
Silicon electrodes hold a promise of increasing the capacity of lithium-ion batteries ten-fold. Yet, their commercial deployment is hampered by large volume changes of silicon particles in response to lithium insertion and extraction. Optimal design of porous silicon structures, aimed at ameliorating this drawback, requires experimentation guided by mathematical models of the chemomechanical behavior of silicon-anode particles and their agglomerations. We present such a model that describes the temporal evolution of a hollow or solid particle’s volume and concomitant stresses, for both galvanostatic and potentiostatic operating conditions. This model is used to optimize design parameters─particle size, particle thickness, and charging profiles─for energy density, while maintaining stable elastic operation. It accurately predicts the experimentally observed value of the partial molar volume of lithium in silicon. Our model also furnishes fundamental insights into chemomechanical interactions in multiparticle electrode systems, which are crucial for advancement of the silicon-electrode technology.
中文翻译:
硅阳极稳定空心颗粒的设计
硅电极有望将锂离子电池的容量提高十倍。然而,它们的商业部署受到硅颗粒响应锂嵌入和脱嵌而发生的巨大体积变化的阻碍。多孔硅结构的优化设计旨在改善这一缺点,需要在硅阳极颗粒及其团聚体的化学机械行为的数学模型的指导下进行实验。我们提出了这样一个模型,该模型描述了在恒电流和恒电位操作条件下空心或实心颗粒的体积和伴随应力的时间演变。该模型用于优化能量密度的设计参数(颗粒尺寸、颗粒厚度和充电曲线),同时保持稳定的弹性运行。它准确地预测了实验观察到的硅中锂的偏摩尔体积值。我们的模型还提供了对多粒子电极系统中化学机械相互作用的基本见解,这对于硅电极技术的进步至关重要。
更新日期:2024-09-12
中文翻译:
硅阳极稳定空心颗粒的设计
硅电极有望将锂离子电池的容量提高十倍。然而,它们的商业部署受到硅颗粒响应锂嵌入和脱嵌而发生的巨大体积变化的阻碍。多孔硅结构的优化设计旨在改善这一缺点,需要在硅阳极颗粒及其团聚体的化学机械行为的数学模型的指导下进行实验。我们提出了这样一个模型,该模型描述了在恒电流和恒电位操作条件下空心或实心颗粒的体积和伴随应力的时间演变。该模型用于优化能量密度的设计参数(颗粒尺寸、颗粒厚度和充电曲线),同时保持稳定的弹性运行。它准确地预测了实验观察到的硅中锂的偏摩尔体积值。我们的模型还提供了对多粒子电极系统中化学机械相互作用的基本见解,这对于硅电极技术的进步至关重要。