当前位置:
X-MOL 学术
›
Acc. Chem. Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Thinking Outside the Energetic Box: Stabilizing and Greening High-Energy Materials with Reticular Chemistry
Accounts of Chemical Research ( IF 16.4 ) Pub Date : 2024-09-12 , DOI: 10.1021/acs.accounts.4c00330 Qi Lai 1 , Yangyang Long 1 , Ping Yin 1 , Jean'ne M Shreeve 2 , Siping Pang 1
Accounts of Chemical Research ( IF 16.4 ) Pub Date : 2024-09-12 , DOI: 10.1021/acs.accounts.4c00330 Qi Lai 1 , Yangyang Long 1 , Ping Yin 1 , Jean'ne M Shreeve 2 , Siping Pang 1
Affiliation
Reticular chemistry has provided intriguing opportunities for systematically designing porous materials with different pores by adjusting the building blocks. Among them, framework materials have demonstrated outstanding performance for the design of new functional materials used in a broad range of fields, including energetic materials. Energetic materials are widely used for rockets, satellites, mining, and tunneling. In terms of energetic materials, explosophores and nitrogen-rich heterocycles are fundamental building blocks for high-energy compounds. However, the traditional strategy of synthesizing HEDMs (high energy density materials) at the molecular level has faced the long-term challenge of balancing energy and stability. Inspired by reticular chemistry, nitrogen-rich heterocycles offer diverse nitrogen sites for designing diversified coordination interactions. Ionic bond interactions exist in a wide range of energetic salts. Furthermore, most metastable explosophores, e.g., nitro, nitramino, and amino groups, can form strong hydrogen-bonding networks. Based on these noncovalent interactions (such as coordination, ionic, and/or hydrogen bonds (HBs)) and/or covalent interactions can determine intermolecular packing/linkage of the energetic fuel and oxidizer components, reticular chemistry provides a new platform evolving from single-molecular design to various energetic frameworks (E of the energetic frameworks with superior comprehensive properties. For example, to achieve coordination with metals or introduce sufficient hydrogen bond donor/acceptor structural units, the host structure of energetic framework materials usually contains less oxygen-rich substituents such as nitro, so the host molecules of the framework, F) at the crystal level, which can enhance the integrated stabilities of EFs.
中文翻译:
跳出能量框思考:用网状化学稳定和绿色化高能材料
网状化学为通过调整构建单元来系统地设计具有不同孔隙的多孔材料提供了有趣的机会。其中,骨架材料在设计用于包括含能材料在内的广泛领域的新型功能材料方面表现出了优异的性能。含能材料广泛用于火箭、卫星、采矿和隧道挖掘。就含能材料而言,爆炸团和富氮杂环是高能化合物的基本组成部分。然而,在分子水平上合成HEDM(高能量密度材料)的传统策略面临着平衡能量和稳定性的长期挑战。受网状化学的启发,富氮杂环为设计多样化的配位相互作用提供了多种氮位点。离子键相互作用存在于多种高能盐中。此外,大多数亚稳态爆炸基团,例如硝基、硝氨基和氨基,可以形成强大的氢键网络。基于这些非共价相互作用(例如配位、离子和/或氢键(HBs))和/或共价相互作用可以确定高能燃料和氧化剂组分的分子间堆积/连接,网状化学提供了一个从单-各种能量框架的分子设计(具有优异综合性能的能量框架E。 例如,为了实现与金属的配位或引入足够的氢键供体/受体结构单元,含能骨架材料的主体结构通常含有较少的硝基等富氧取代基,因此晶体中骨架的主体分子F)水平,可以增强EF的综合稳定性。
更新日期:2024-09-12
中文翻译:
跳出能量框思考:用网状化学稳定和绿色化高能材料
网状化学为通过调整构建单元来系统地设计具有不同孔隙的多孔材料提供了有趣的机会。其中,骨架材料在设计用于包括含能材料在内的广泛领域的新型功能材料方面表现出了优异的性能。含能材料广泛用于火箭、卫星、采矿和隧道挖掘。就含能材料而言,爆炸团和富氮杂环是高能化合物的基本组成部分。然而,在分子水平上合成HEDM(高能量密度材料)的传统策略面临着平衡能量和稳定性的长期挑战。受网状化学的启发,富氮杂环为设计多样化的配位相互作用提供了多种氮位点。离子键相互作用存在于多种高能盐中。此外,大多数亚稳态爆炸基团,例如硝基、硝氨基和氨基,可以形成强大的氢键网络。基于这些非共价相互作用(例如配位、离子和/或氢键(HBs))和/或共价相互作用可以确定高能燃料和氧化剂组分的分子间堆积/连接,网状化学提供了一个从单-各种能量框架的分子设计(具有优异综合性能的能量框架E。 例如,为了实现与金属的配位或引入足够的氢键供体/受体结构单元,含能骨架材料的主体结构通常含有较少的硝基等富氧取代基,因此晶体中骨架的主体分子F)水平,可以增强EF的综合稳定性。